
BUILD FASTER
WEBSITES

A web performance guide

Heart Internet Presents

3

An ebook version of this book is available at:

https://www.heartinternet.uk/blog/build-
faster-websites-free-ebook-download/

4

Contents

6

8

22

40

56

68

80

Foreword
by Oliver Lindberg

Performance Matters (and How to Convince

Your Clients)

by Allison McKnight

Performance Budgets: The What, Why, and How

by Marcos Iglesias

You Don’t Need Permission to Build Fast Websites

by Ryan Townsend

Perceived Performance Matters, Too

by Jason Lengstorf

The Next Four Billion: How to Make Sites

Performant on Mobile Devices

by Jem Young

The Critical Path – A Quest to Render Pixels

Quickly

by Stefan Judis

5

98

118

138

152

Optimise Prime: How to Optimise Images for

Performance

Henri Helvetica

Make Your Animations Perform Well

by Anna Migas

Performant Web Font Techniques

by Matt James

Measuring Performance

by Andy Davies

6

FOREWORD

Oliver Lindberg is an independent editor, content
consultant and founder of new web events series
Pixel Pioneers (https://pixelpioneers.co), based in

Bath, England. Formerly the editor of .net magazine,
he’s been involved with the web design and

development industry for more than a decade and
helps businesses across the world create content

that connects with their customers.

Oliver Lindberg

The editor

http://

7

In 2017, the size of the average web page reached 3MB. The
modern web is becoming more and more bloated, and page
sizes continue to grow just as steadily as the number of devices
we’re designing for. The need to optimise our sites and apps for
performance has become more important than ever, especially as
the next billion people are getting ready to come online, most of
them on mobile in emerging markets.

In this book — written by front-end developers, engineers, and
web performance advocates from the UK, US, and Europe — we’ll
explain just why performance matters and how to convince your
clients. We’ll cover how to set up performance budgets, how to
build a fast site even if you don’t get permission from your client,
and how to subtly trick users into thinking a site loads faster than it
actually does.

There are many things you can do to improve the performance
of your site, and in this book we’ll present a range of techniques
covering images, animations, and web fonts. We’ll also look at how
to make sites performant on mobile devices in particular, optimise
JavaScript and CSS (which can block the rendering of a web page)
and how to measure the performance of your sites. Whether you
want to instigate change within your organisation or learn about
the latest best practices, you’ll find something for you here.

Some of our authors work for big companies like Netflix, Etsy,
Eventbrite, and IBM. Others are freelance or employed by software
development agencies and start-ups. What they all have in
common is a passion for building better and faster websites and
ultimately creating an enjoyable user experience for all.

8

Allison McKnight (twitter.com/aemcknig) is a software
engineer at Etsy. During her four years on the

performance team, she focused on creating tools that
allowed teams to see how their changes affected site

performance, understand how those changes impacted
the user experience, and feel empowered to make
product decisions based on performance changes.

PERFORMANCE MATTERS
(AND HOW TO CONVINCE YOUR CLIENTS)

Allison McKnight
The author

9

If you’ve ever used a slow website (and chances are you have), you
know that performance is an important part of the user experience.

But performance isn’t always the focus of teams developing new
sites or building out existing features. Too often, performance
is seen as a “bonus” feature rather than a key part of the user
experience. Stakeholders urge developers to build new features
that they hope will drive key business metrics, such as gross
merchandise sales (GMS) or user engagement, leaving developers
little time to focus on performance. What clients and stakeholders
might not realise is that performance is one of those features.

In fact, performance is an essential part of the user experience.
Users who experience a slow website are seeing a degraded
experience, and they are less likely to interact with, purchase
from, or return to that site as a result. In turn, this decreased user
engagement impacts business metrics that stakeholders and
clients care about.

Without a solid understanding of the link between performance
and business metrics, however, it’s hard to shift stakeholders’ focus
from building sleek new features to optimising the current product.

This is where you come in. You can deliver the best product for
your clients, users, and stakeholders by understanding:

• How performance affects the user experience

• How the impact of performance on the user
experience influences the metrics that matter to your
clients and stakeholders

• How you can share this information with clients and
stakeholders in a way that shows the importance of
focusing on their products’ performance

10

Performance is user experience

Many of us understand that trying to use a sluggish website can
be frustrating, likely through firsthand experience. If you’ve ever
become fed up with a slow experience, you’re not alone — a 2016
study by Google’s Doubleclick discovered that “53% of mobile site
visits are abandoned if pages take longer than 3 seconds to load”
[1]. Even on mobile, where users are on slower hardware and likely
poor connections, the bar is high.

But the impact that performance can have on the user experience
is much deeper than you might imagine.

While a long page load time will make a website feel slow, it
can do even more damage to users’ perception of your site. A
study performed by Radware in 2013 [2] found that when one
website was artificially slowed down by 500 milliseconds, visitors’
perception of the brand changed. When interviewed, visitors who
experienced the site at a normal speed generally had more positive
than negative opinions and praised the usability and friendliness of
the site.

But users who experienced the slower version of the site shared
different feedback: beyond complaining that the site was slow,
they described their experiences as frustrating, complicated,
inelegant, boring, childlike, and tacky. Tacky! Although the only
difference in these two groups’ experience was the site’s load time,
users in the slower group had a completely different perception of
the website and its brand.

In fact, your site’s performance influences whether users get to
experience the site at all. Consider emerging markets, where
infrastructure constraints can multiply the impact of poor
performance.

11

YouTube learned about the importance of performance in these
markets in 2012, when they sought to optimise their video page
[3]. Realising that YouTube’s video page was ridiculously large, one
engineer set out to build an optimised, lightweight version of the
page. Engineers expected page load times for the optimised page
to be much shorter than load times for the bulky original version
of the page. But the data was surprising: load times were actually
significantly longer for the optimised version of the page — two
minutes on average!

This was perplexing at first, but when engineers looked into the
data, they discovered that the lightweight version of the page was
getting a disproportionate number of views from areas with very
low connectivity. For users in these areas, the older, unoptimised
version of the page had taken 20 minutes to load. With the new
lightweight version of the page, these users were finally able to
load and watch a video on YouTube in a reasonable amount of
time. By optimising the video page, YouTube was able to reach
entire regions of users that had previously been alienated by long
page load times.

Performance is an important part of the user’s experience. Its
impact ranges from frustration with a slow experience to a
user’s willingness or even ability to use a site. In order to provide
users with a great experience, we need to focus on our sites’
performance.

12

Making the case for performance

Sometimes, however, knowing that performance affects the
user experience is not enough. Clients and stakeholders who are
focused on running a successful business have their own set of
business metrics and goals, and it isn’t always obvious to them
that performance should be one of them. Furthermore, it can be
hard to understand the true performance of one’s own website —
loading a site on a computer in an office with a good, fast internet
connection might make the site seem to load quickly, but users
who are loading the site at home, on the train, or on their mobile
device might have a different experience.

In order to understand the importance of performance,
stakeholders need to first understand that performance impacts
the business metrics that they care about and identify that there is
room for performance improvement in their product.

The following section highlights strategies and tools that you can
use to show clients and stakeholders that performance is relevant
to their business. By making performance relevant, you can make
the case for focusing on performance.

Link performance to business goals

A first step towards convincing stakeholders that spending time on
performance optimisation will help move their business forward
is to link performance to the metrics and initiatives that they care
about.

13

Performance is a business optimisation

While clients do care about the user experience, they have good
reason to focus on business metrics and projects that will move
those metrics. After all, they are running a business: they need to
maintain and grow their key metrics so that they can deliver value
to their own stakeholders.

Focusing on these business metrics does not preclude
performance work. In fact, when your goals include improving
business metrics, performance becomes even more important.
When users experience slowness on a website, they are less likely
to engage with the site, and that reluctance impacts business
metrics.

It has been demonstrated time and again that sluggish load
times lead to sluggish business metrics and that improving load
times can lead to improved business metrics. Here are just a few
examples:

• By implementing a server-side performance improvement
[4] that brought average response time down from 4.80
seconds to 3.95 seconds, COOK improved conversion
rate by 7% (from 3.82% to 4.09%).

• An analysis by Google DoubleClick [1] found that pages
that load in 5 seconds or less on mobile generate up to
twice as much ad revenue as sites that take 19 seconds
to load. (At the time of the study, 19 seconds was the
average load time for mobile sites on a 3G connection.)

14

• When adding more results to Google’s search page
increased page load time by 0.5 seconds, searches by
users decreased by 20% [5].

• When AliExpress reduced page load time by 36%, the
number of orders placed on the site increased by 10.5%
[6].

• When the Financial Times artificially added a one-second
delay to their page load time, users viewed 4.9% fewer
articles on average [7].

• During Obama’s 2012 campaign for the United States
presidency, improved performance on the campaign’s
donation page led to a 14% increase in donation
conversions [8].

Focus on your stakeholders’ key metrics and business goals

Clearly, focusing on performance has worked out well for these
companies. But business goals (and the metrics that track progress
towards those goals) vary widely from company to company. You
need to make performance relevant to your stakeholders’ goals by
showing how it can impact the key metrics that they care about.

Ask yourself which metrics your stakeholders are focused on
improving. Perhaps they want to increase the number of new or
repeat visits to the site. If your client publishes subscription media,
they may aim to optimise the number of subscriptions to their
service. Social media sites may aim to improve user engagement
by focusing on favourite or comment rates.

Find the metric that your clients are focused on improving. Then,
tailor your argument to your stakeholders by showing them how

15

performance optimisations can influence that particular metric.
Once your client sees performance as a lever that can move
exactly the metrics that they seek to improve, performance will
no longer be just a “nice-to-have” — it will become a way for your
team to achieve its goals.

A valuable tool in this endeavor is WPO Stats [9], which collects
and lists dozens of case studies that link performance to metrics
such as conversion, engagement, bounce rate, page views,
and more. Using this tool, you can find case studies that relate
performance to the business metrics that stakeholders care about.

Short-term initiatives

In addition to long-term goals, such as optimising a set of business
metrics, your company likely has current initiatives that will help
it make progress towards those goals. This is another opportunity
for you to make performance relevant to your clients. Performance
can be used to make progress on the short-term initiatives that
your client hopes will help them make progress towards their
overarching goals.

For instance, at a time when the company was trying to improve
the discoverability of their site and product, Smart Furniture did
some research to discover that Google considers page load time
in its ranking of search results. The team was able to improve the
performance of their site [10], resulting in a higher placement in
Google’s search results and leading to more visitors to the site
from Google searches.

16

Here, the team at Smart Furniture realised that performance could
be used to accomplish a short-term initiative (to push Smart
Furniture results higher in Google search results) that supported a
long-term business metric (visits to Smart Furniture).

By considering short-term initiatives that your clients are taking on,
you can show how performance can help your clients reach their
goals. At the same time, you’re getting performance “in the door”
so that your stakeholders will consider performance when thinking
about future initiatives to support their business goals.

Show, don’t tell

Another barrier to getting buy-in from your clients and
stakeholders is that it is often hard to empathise with users who
experience slowness on your site.

Because offices tend to offer good internet connections, and
because website development usually happens on computers
rather than on slower mobile devices, many of us are used to the
pages we’re working on to load relatively quickly. This makes it
easy to forget that users in other areas or on different devices
might experience much slower page load times.

To help stakeholders understand what users are experiencing on
their site, you can show them how their site loads for users on
different devices or in different parts of the world.

WebPagetest [11] is a tool that does exactly that. It will help you
demonstrate to your stakeholders how real users experience their
site. WebPagetest can load a page and generate a video of the
page loading as well as a filmstrip view showing the visual progress
of the page load. Showing a video of your page loading on a
mobile device, or on a sub-optimal network, can help your clients

17

and stakeholders empathise with their users, understand how their
site performs in the wild, and appreciate the need for a focus on
performance.

WebPagetest’s filmstrip view shows what users experience as they load the Etsy homepage

Compare to the competition

This technique can also be used to capitalise on your client’s
competitive spirit by highlighting where your product stands in
relation to its competition. WebPagetest’s comparison view allows
you to load two pages — for instance, your site and a competing
site — and show how the load times differ. If your client’s site has
a competitor, use this tool to show stakeholders how their site
stacks up.

WebPagetest’s filmstrip view comparing the page load experiences of Google and Bing

18

Maybe your site is faster than the competition — in this case, the
comparison should demonstrate to stakeholders that performance
is an advantage that your product has over the competition, and
that it should be maintained. If your site is neck-and-neck with the
competition, or sluggish in comparison, it’s a good time to focus
on performance optimisations — the resulting improvement in
the user experience will help you win customers away from your
competition.

Make performance relevant

Performance is an essential part of the user experience, and
because you strive to provide the best experience for your users,
performance is important and relevant to you. You can help your
clients see the importance of performance by making performance
relevant to them: by showing them the impact of performance
on the user experience, users’ perception of their product, and
the business metrics that stakeholders care about. By making
performance relevant to your client’s goals and priorities, you can
show them that focusing on performance will bring them closer to
achieving those goals.

19

Resources

[1] Alex Shellhammer, DoubleClick
The need for mobile speed: How mobile latency impacts publisher revenue
https://www.doubleclickbygoogle.com/articles/mobile-speed-matters/

[2] Tammy Everts, Radware Blog
Mobile Web Stress: The impact of network speed on emotional engagement and
brand perception
https://blog.radware.com/applicationdelivery/
applicationaccelerationoptimization/2013/12/mobile-web-stress-the-impact-of-
network-speed-on-emotional-engagement-and-brand-perception-report/

[3] Chris Zacharias
Page Weight Matters
http://blog.chriszacharias.com/page-weight-matters

[4] NCC Group
COOK Case Study
https://www.nccgroup.trust/uk/about-us/resources/cook-real-user-monitoring-
case-study/?style=Website+Performance&resources=Case+Studies

[5] Greg Linden
Marissa Mayer at Web 2.0
https://glinden.blogspot.co.uk/2006/11/marissa-mayer-at-web-20.html

[6] Dr. Dongbai Guo, Akamai Edge Conference
Future of Commerce
https://edge.akamai.com/ec/us/highlights/keynote-speakers.jsp

[7] Matt Chadburn & Gadi Lahav, Financial Times’ Engine Room
A faster FT.com
http://engineroom.ft.com/2016/04/04/a-faster-ft-com/

[8] Kyle Rush
Meet the Obama campaign’s $250 million fundraising platform
http://kylerush.net/blog/meet-the-obama-campaigns-250-million-fundraising-
platform/

20

[9] WPO Stats
https://wpostats.com/

[10] Akamai
Akamai Accelerates Smartfurniture.com, Resulting In Higher Search Engine
Rankings That Have Led To More Sales And Revenues
https://www.akamai.com/uk/en/about/news/press/2010-press/akamai-accelerates-
smartfurniture-com-resulting-in-higher-search-engine-rankings-that-have-led-to-
more-sales-and-revenues.jsp

[11] WebPagetest
https://www.webpagetest.org/

21

22

PERFORMANCE BUDGETS:
THE WHAT, WHY, AND HOW

Marcos Iglesias (www.marcosiglesias.com) is a senior
software engineer who builds compelling user interfaces

at Eventbrite. Marcos is passionate about improving
developer efficiency, building tools, and setting up

processes to save his peers both time and effort. On top of
all that, he enjoys contributing to Eventbrite’s Engineering

blog (www.eventbrite.com/engineering), giving talks, and

maintaining Britecharts (eventbrite.github.io/britecharts),
the open source charting library. Marcos has eight years

of experience developing web applications and sites
with front-end technologies in different fields, including

e-commerce, online banking, and SaaS platforms.

Marcos Iglesias
The author

23

Whether you are a lonely freelancer, work in a modest agency, or a
large-scale product company, performance budgets can help you
get the web performance conversation started. They will help you
sell web performance to your clients, and allow you to make quick
decisions with a clear reference point.

Arguing between design, product, and engineering about every
feature that needs to be built is hard. There are many stakeholders
and considerations when creating new features or products. This
process can go wrong, which results in delays, feature creep,
frustration, and ultimately, inferior products for our users.

Definition

A performance budget is a set of values for web performance
metrics that — agreed by engineering, product, and design —
defines the minimum web experience that your users will enjoy.

It acts as a reference for making decisions about feature inclusion,
update, removal or deprecation.

Why use performance budgets?

The short answer is users. They won’t have to close your site
because they lack the patience to wait for it to load. But not only
users will benefit.

For web engineers, tracking performance budgets will be helpful
when comparing different approaches to a problem. They will
contribute to highlight the weight, processing, and code parsing
time that different frameworks, vendors or solutions will add.
Performance budgets are a tool for translating web performance
into visible business value.

24

For designers, a performance budget will show the limitations of
less effective designs. Knowing the boundaries will help designers
find a better, more performance-friendly solution.

For product managers, performance budgets help to prioritise
features and to understand how they contribute to the final user
experience. They will have a measure to push for improvement
campaigns, mapping them to fewer bounce rates and more
conversions.

And finally, for managers, performance budgets will help to track
the progress of improvements by the team.

How to use performance budgets

Your team will measure every decision against the performance
budgets. Product and design will try not to surpass the budgets,
and engineering will make sure they don’t get surpassed and work
actively to decrease them even more.

When something overcomes the threshold, as Steve Souders —
from SpeedCurve, and formerly Google and Yahoo — advises [1],
you can either:

• Optimise an existing feature or asset on the page

• Remove an existing feature or asset from the page

• Don’t add the new feature or asset

Brutal and straightforward, isn’t it?

On a daily basis, tracking performance budgets will help your
design and development teams to work with web performance in
mind. For example, the group decides to utilise an SVG instead of

25

a picture or chooses a lighter weight JavaScript framework instead
of a weightier, more fashionable counterpart.

Setting performance budgets

A factor to consider when setting a budget is the type of hosted
content. Landing pages, marketing brochures, homepages,
product listings, video content and web applications have all
different use cases and require different strategies. You will want to
set a performance budget for each of these types of content.

Another consideration is your team and their motivation. Will they
be excited about beating the competition? Maybe the team is more
driven by visible improvements against the current version or just
‘doing it right’ following industry guidelines. In this section, you will
learn about the various approaches and alternative strategies.

Be faster than your competitors

This is one of the most common approaches. You can create a
performance budget by running your competitors sites through
WebPagetest [2], and choose [3] metrics [4] so you can beat them.

In case you are wondering what it means to ‘beat them’, there is a
quantitative way to measure it, using the 20% Rule [5].

This rule states that, for our users to be able to perceive a
noticeable improvement between more performant and less
performant experiences, the difference in speed should be no less
than 20 per cent. Below that point, our users will think both sites
are more or less fast.

Coming back to the competitor’s comparison, we can say this
is an easy way of approaching performance budgets if you

26

need the sign-off from your clients or management. It’s easy to
conceptualise and will also be a compelling strategy to sell to your
team and managers. After all, who doesn’t want to beat ‘that other’
company?

It will probably need a system that keeps track of your current and
emerging competitors, so that your performance budgets move
accordingly.

Improve the current version

This is an excellent approach if you are developing a redesign or
code rewrite. You could do a performance audit on the different
page types on your site and create your new performance budget
by reducing those metrics by 20 per cent.

Follow academic or industry guidelines

Perhaps this approach is the best one when you have an entirely
new product that you are building from scratch. This strategy will
likely need some extra feedback cycles, as its initial values will be
guesses to be contrasted with the experience of real users on a
wide range of devices and network conditions.

You could try to follow Human-Computer Interaction (HCI)
guidelines based on user limits in ‘Response Times’ [6], published
by Jakob Nielsen in his book Usability Engineering [7]. More
recently, we have seen Google’s Chrome Team expose a model for
web performance they called ‘RAIL’ [8] based on setting goals for
the different ‘actions’ web users perform within web applications.

27

Optimise business value

This is a highly focused way of setting performance budgets.
The vast amount of research and case studies shared by tech
companies about their performance improvement campaigns
show the economic benefits they produced. You can refer to
Google’s [9] and Yahoo’s [10] cases among others.

First, identify the most critical parts of your site; they could be
a landing page, or maybe the checkout flow. Set performance
budgets on those key sections and try to improve them by the 20%
rule. Release it to the user, evaluate, and repeat.

You can set performance budgets using one or a combination
of strategies. It will all depend on what makes sense to you as a
company or to your clients. Don’t worry if your first budgets are off
or not representative. At the end of the day it’s an estimation, and
we know how flawed we humans are at that task.

28

Metrics

Measuring web performance is hard. Since the very beginning of
web performance this has been a source for endless discussions:
Should you favour fewer HTTP requests and heavier assets?
One big cacheable JavaScript bundle or on-demand module
downloads?

WebPagetest results showing several metrics

In today’s performance world, this is still on-going. Here are some
metrics you could use, ordered in groups, based on the work of
Tim Kadlec [11].

Quantity-based metrics

Based on raw values, these are conceptually the easiest. Here we
could include the number of HTTP requests made, the weight
of the images, styles and JavaScript assets and even the HTML
document weight. These metrics describe the ‘browser experience’
and are not directly related to the user experience.

I like to use these metrics to create lapidary sentences like ‘we are
downloading 2MB of images!’ They are excellent for raising alarms,
but usually far from what I would consider scientific truths. When
and how you download those assets or make those requests is
more important than the total sum of them.

29

Rule-based metrics

Less fashionable lately, rule-based scores are generated by web
applications and browser extensions, and their output is a single
or a series of rates to your site or properties. The earliest example
in this category is Yahoo’s YSlow [12], followed by Google’s
PageSpeed Insights [13] and more lately Lighthouse [14]. My
favorite, WebPagetest, also includes a grading system.

WebPagetest results including scores

A good thing about these metrics is that they focus on scores,
which are easy to communicate and measure. They also provide
‘action items’ to improve the performance of the tested page.
Sadly, they also measure the browser experience, so even if
they include more metrics to give an ‘overall’ view of the web
performance, they are not centered on user experience.

You could probably make an exception here for Lighthouse, as it
tracks some user-centric metrics like ’Time to Interactive’ [15] and
‘Perceptual Speed Index,’ measured by Google Chrome.

30

Milestone timings

These are usually time-based metrics reported by the browsers.
You can find them in the ‘Network’ tab of the browser’s developer
tools. ‘Page Load,’ ‘DOMContentLoaded’ or ‘Time to First Byte’ are
good examples.

The waterfall view on WebPagetest shows the more important milestones

‘Time to First Byte’ gives you a good measure of your backend
speed, and the new ‘Start Render’ milestone tells you when the
page started its render. These, along with the ‘Page Load’ event,
describe the user experience.

They tell you when milestones trigger, but that’s not the whole
picture. What the users see inbetween ‘Start Render’ and ‘Page

Load’ is not recorded here. That’s where the Speed Index comes in.

31

Speed Index

Pat Meenan created Speed Index as part of WebPagetest to
measure how the page will show its contents to the user. From the
documentation:

“The Speed Index is the average time at which visible parts of the
page are displayed.” [16]

This measurement describes the user experience of the site better,
so much that it’s dependent on the viewport of the users. When
measuring the Speed Index, you will discover how a user with
any given browser, viewport size, and network connection will
experience the load of the contents of your site.

WebPagetest analyses the visual progress of the webpage

It’s an excellent metric but still doesn’t give us a complete picture.
Imagine that you have a web application that quickly loads its
content, but later, it spends a lot of time downloading JavaScript
bundles. It will need to parse those files to start the application. All
this time, the users won’t be able to interact with the page. That’s
where custom metrics shine.

32

Custom metrics

Custom metrics are events that you will trigger when something
interesting happens.

You could track a hero image’s render time, as described by Steve
Souders [17]. Or it could be the main action of the application, like
the well-known example of the ‘Time to First Tweet’ [18].

In modern development, you can use the Web Performance API
[19] and get custom metrics tracked by the browser and reported
to your servers.

They have one big drawback: they are not scalable. Doing this for
all the actions of our site would be absurd. However, you could
do it by ‘templates,’ targeting different content types with generic
‘template-based’ custom metrics.

Custom metrics also require some testing and adjusting, and the
techniques to measure are sometimes tricky. They are the more
granular metric.

Choosing metrics and thresholds

Favour metrics that show you information about the experience
of your users. Optimise when they see the content and when they
can interact with it.

Choose threshold values that push you to keep on creating
business value by improving your product. Use the conversions
and analytics data to establish a feedback loop. Remember, the
performance budgets should not be carved in stone, and they
could change, along with the business goals.

33

Contrast it with lots of feedback, and check it on the most
common devices for your audience. There will be massive
differences between iPhone-heavy users and limited feature-
phones.

Network conditions could also be an essential element. Is your
audience checking the site on the train during commuting? Do
they always check your dashboards from their work’s desktop
computer?

In the end, your performance budgets will be created taking
into account your type of content, the metrics you want (or you
can track), and your research of audience, devices and network
conditions.

Examples of performance budgets

Some specific examples include the performance budget of BBC
News [20], which was to make the page usable in less than 10
seconds under a GPRS connection in 2012.

In 2014 Smashing Magazine mentioned a performance budget
optimised for the Critical Rendering Path [21], so all CSS,
JavaScript, and HTML for the ‘Above the Fold’ area of the site
would need to fit into the first 14Kb. They also added a challenging
goal for the Speed Index: less than 1,000 milliseconds.

34

Recently, Alex Russell from Google, mentioned a performance
budget based on Time To Interactive [22]: TTI under 5 seconds for
the first load and under 2 seconds for the repeating visitor.

I would recommend you start picking a ‘Start Render’, a ‘Speed
Index’ and a set of custom metrics that represents business value
for your company or client. Get the ball rolling and review it soon.

Tracking performance budgets

Choosing between tools will depend on the priority of web
performance for your client or company, the budget you are
allowed to spend and the scale of the site. There are many tools in
the market, some of them are free or do-it-yourself, while others
are more aimed at enterprises.

Free options

• Sitespeed.io [23] enables you to set up a whole
infrastructure of testing for your site. It offers complete
reports and can now keep track of the Speed Index and
custom metrics by using a private instance of WebPagetest.

• SpeedTracker [24] is a more lightweight solution that tracks
the Speed Index and sends you alerts. It will work with a free
WebPagetest account key, although it will be limited to the
number of checks per day.

35

Subscription-based tools

• Calibre [25] adds to the mix some of the Chrome-specific
metrics like Time To Interactive that are provided by
Lighthouse.

• Rigor [26] is a pretty complete solution, although at the time
of writing this hasn’t added Speed Index as a metric.

• SpeedCurve [27] is by far my favourite of the paid solutions.
It allows Speed Index and custom metrics and provides a lot
of useful data and comparisons within their dashboards.

Complete custom solutions will take time and resources from your
team; this will be a good investment if you value performance
considerably. If you are more interested in lower budgets, and try
to start small to show the business value before going further, then
SpeedTracker, Calibre or Rigor could be great options.

When dealing with high traffic sites, SpeedCurve and Rigor seem
to be good choices, with SpeedCurve being the absolute best of
the bunch if you can afford it. For your side projects or hobbies, I
would recommend SpeedTracker or Sitespeed.io.

36

Conclusion

Performance budgets are self-imposed limits to web performance,
which — employed by the team as a reference — help them create
an enjoyable user experience. It’s critical creating performance
budgets early in the project lifespan, as the effects will guide the
development.

They serve all the components of a web development team,
forcing them to take performance into account. Several estimating
strategies and metrics allow your budgets to adapt to your
content, audience and technical limits. You can choose between
free and paid tools to help you track them.

Adopting performance budgets is a workflow change that
influences product, design, and engineering, and it all happens
with the end user in mind.

Like other transformations, it will take some time to figure out,
and some flexibility will be required. It’s a challenge that you can
overcome by using the data to show progress, business value and
customer satisfaction.

37

Resources

[1] Tim Kadlec
Setting a Performance Budget
https://timkadlec.com/2013/01/setting-a-performance-budget/

[2] WebPagetest
http://www.webpagetest.org/

[3] The Path to Performance podcast
Jeff Lembeck of Filament Group
https://pathtoperf.com/2015/05/05/03-with-jeff-lembeck.html

[4] Responsive Web Design podcast
Niko Vijayaratnam & John Cleveley of BBC News
https://responsivewebdesign.com/podcast/bbc/

[5] Denys Mishunov, Smashing Magazine
The Need for Performance Optimization: The 20% Rule
https://www.smashingmagazine.com/2015/09/why-performance-matters-the-
perception-of-time/#the-need-for-performance-optimization-the-20-rule

[6] Jakob Nielsen, Nielsen Norman Group
Response Times: The 3 Important Limits
https://www.nngroup.com/articles/response-times-3-important-limits/

[7] Jakob Nielsen, Nielsen Norman Group
Usability Engineering
https://www.nngroup.com/books/usability-engineering/

[8] Paul Irish, Smashing Magazine
Introducing RAIL: A User-Centric Model for Performance
https://www.smashingmagazine.com/2015/10/rail-user-centric-model-
performance/

[9] Marissa Mayer, Google
In Search of… A better, faster, stronger Web
http://assets.en.oreilly.com/1/event/29/Keynote%20Presentation%202.pdf

38

[10] Stoyan Stefanov, Yahoo
Don’t make me wait! Or Building High-Performance Web Applications
https://www.slideshare.net/stoyan/dont-make-me-wait-or-building-
highperformance-web-applications

[11] Tim Kadlec
Performance Budget Metrics
https://timkadlec.com/2014/11/performance-budget-metrics/

[12] YSlow
http://yslow.org/

[13] PageSpeed Insights
https://developers.google.com/speed/pagespeed/insights/

[14] Lighthouse
https://developers.google.com/web/tools/lighthouse/

[15] Time To Interactive
https://github.com/WPO-Foundation/webpagetest/blob/master/docs/Metrics/
TimeToInteractive.md

[16] WebPagetest
Documentation – Speed Index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/
speed-index

[17] Steve Souders
Hero Image Custom Metrics
https://www.stevesouders.com/blog/2015/05/12/hero-image-custom-metrics/

[18] Twitter
Improving performance on twitter.com
https://blog.twitter.com/engineering/en_us/a/2012/improving-performance-on-
twittercom.html

[19] Mozilla
Web Performance API
https://developer.mozilla.org/en-US/docs/Web/API/Performance

39

[20] Tom Maslen
The story of how BBC News fell in love with Responsive Web Design
https://speakerdeck.com/tmaslen/moving-swiftly-the-story-of-how-bbc-news-fell-
in-love-with-responsive-web-design

[21] Vitaly Friedman, Smashing Magazine
Improving Smashing Magazine’s Web Performance: A Case Study
https://www.smashingmagazine.com/2014/09/improving-smashing-magazine-
performance-case-study/

[22] Alex Russell
Can You Afford It? Real-world Web Performance Budgets
https://infrequently.org/2017/10/can-you-afford-it-real-world-web-performance-
budgets/

[23] Sitespeed.io
https://www.sitespeed.io/

[24] SpeedTracker
https://speedtracker.org/

[25] Calibre
https://calibreapp.com/

[26] Rigor
https://rigor.com/

[27] SpeedCurve

https://speedcurve.com/

40

YOU DON’T NEED PERMISSION
TO BUILD FAST WEBSITES

With over 15 years’ experience developing for the web
and an undying passion for web performance, Ryan

Townsend (twitter.com/RyanTownsend) is the CTO of
Shift Commerce – a SaaS e-commerce platform bringing

agility to mid-to-enterprise retailers. His pragmatic and
performance-led outlook means that – on the rare

occasion that he does wear a shirt – his sleeves stay firmly
rolled up: even as an exec, his favourite place is right there
in the thick of things with his team. Outside of the office,

you’ll usually find him picking up heavy objects in the gym

or falling off his mountain bike down the side of a hill.

Ryan Townsend
The author

http://twitter.com/RyanTownsend

41

British fashion and homeware retailer Matalan is really forward-
thinking when it comes to the web, and performance is something
in which they place considerable value. Likewise, my team at Shift
Commerce and I get a kick out of building websites that load in a
blink of an eye — for many of us, it’s a matter of pride.

So, ultimately, when Matalan approached us to implement a new
platform, my team built a fast site. Business as usual.

Of course, your mileage may vary with this approach. As there may
be commercial sacrifices, or a change to the user experience, you
may need permission to make the fastest website, but you certainly
don’t need it to make a fast one.

The wonderful thing is that the tools we have at our disposal are
getting better all the time. Thanks to the herculean efforts of the
browser vendors, visibility into how browsers operate is increasing,
our ability to resolve issues natively without resorting to hacks
is getting easier, and there is simply more we can do without
requiring costly rewrites or introducing new technology.

Below are some of the techniques implemented behind-the-
scenes by my team to not only avoid performance issues, but to
deliver improvements as part of Matalan’s relaunch too.

Matalan’s website on desktop and mobile – responsive imagery ensures high performance

42

Respect the network

If there’s one takeaway I can give you from this entire article, it’s to
treat the network as a precious and finite resource.

It doesn’t matter whether your customers are based in developed
countries, with super-fast 4G connectivity and the latest powerful
smartphones — high latency and low bandwidth can occur for a
whole variety of reasons — anyone who’s ridden a train in the UK
will know this! So, we should be treading very carefully whenever
making network requests — the last thing any business wants is
reasons for their customers to go elsewhere.

If you need any further convincing, see Harry Roberts’ article on
The Fallacies of Distributed Computing [1], a concept penned way
back in 1994.

Limit critical-path assets

You may have heard the phrase “the fastest request is one never
made” — minimising the number of requests required for a
meaningful paint to occur will deliver significant gains for the
user experience, even if we’re merely moving them off the critical
rendering path but not removing them altogether.

Typically the requests we’re looking for are any stylesheet <link>
tags or non-asynchronous/deferred <script> tags either in the
<head> or anywhere above the bottom of <body>, this also
extends to any CSS imports or web fonts loaded within stylesheets.
Note: this includes both first and third party requests.

Every single one of these requests is a Single Point of Failure
(SPOF), and any latency or slowness in loading them will directly
add time to the visitor being sat staring at a blank white screen.

43

When we are starting from scratch and start adding each of these
tags, we should consider whether:

1. the tag needs to be synchronous — if not, make it
asynchronous or deferred to page load.

2. the contents need to be entirely synchronous, or whether
you could break out into two separate sync/async bundles,
with the most minimal code being synchronous.

3. you could (or should) inline it within the HTML itself to avoid
those extra round trips with the server.

 Synchronous Tag Asynchronous Tag

Deferred Tag

44

Google AMP is quite a controversial project amongst the web
development community, but whatever your views are, many
of their requirements around implementation make excellent
guidelines for non-AMP projects too:

1. No network requests allowed on the critical rendering path

2. Up to 48kb CSS, delivered via inline <style> tag only

3. No CSS @import

4. Minimal options for custom web fonts (limited to just four
whitelisted third parties)

Controlling the network

If you must hit the network for critical path resources, protecting
the requests we make is vital.

Thankfully, with the recent introduction of Service Workers, we can
intercept network requests and modify how they are handled.

There are many different strategies we could adopt:

• enforcing a short timeout on third party critical-path
requests

• serving stale content when fresh requests are taking too
long to respond

• racing the network against loading from our cache

Google have an excellent project called ‘sw-toolbox’ [2] which
makes implementation straight-forward.

45

The best part is that if a browser doesn’t support Service
Workers yet, it’ll degrade gracefully. So, whilst visitors won’t
get the protection, there’s no requirement to implement hacky
alternatives.

Resource hints

There are a few hints we can provide to browsers to improve
both our critical and non-critical path rendering and execution by
instructing it of upcoming requests:

• DNS Prefetch

• Preconnect

• Prefetch

• Preload

These are tags analysed by the browsers pre-parser so their
appropriate actions can be triggered ASAP without you having to
wait for the entire DOM to be compiled.

Note: there is a fifth resource hint, ‘prerender’, but Google
has shown intent to unship it as the overheads outweigh any
performance benefits, so I won’t be covering it here.

DNS Prefetch

This is the most minor of the three resource hint tags; it simply tells
the browser to perform a DNS lookup for a given domain:

 <link rel=”dns-prefetch” href=”//example.com” />

46

This means when a request on that domain name is made, there is
no wait-time for DNS to be resolved. It’ll still require a connection
to be initialised though, so this is only useful for times when
requests to the domain may not occur on every page load, or
when the protocol is unknown (i.e. the request could be over HTTP
or HTTPS).

Preconnect

<link rel=”preconnect” href=”https://example.com” />

This will make the DNS lookup and open the connection to the
server over the given protocol, meaning it’s immediately prepared
for any requests.

It’s perfect for scenarios where requests have dynamic paths or for
asynchronous/deferred requests that need to load promptly but
aren’t on the critical path.

Prefetch

Prefetch is a low-priority hint, browsers will use idle-time to make
the request and drop the response into the cache.

<link rel=”prefetch” href=”/next-page.html” />

If you know the page that’s likely to be the next navigation for the
user, you can insert this tag, and it will request the initial HTML
before they even click the link.

You don’t just have to hard-code this into your HTML; you can
dynamically insert these with JavaScript. So you could use
hovering an image to trigger prefetching the link it points to, as the
user is showing intent they may be interested.

47

Preload

Preload is, in my opinion, the most valuable resource hint of all.

This instructs the browser to look up the DNS, initialise a
connection and start downloading a file.

<link rel=”preload” href=”https://example.com/script.js” as=”script” />

Note: the as attribute needs to be set to a value relevant to the
type of resource being requested — otherwise there will be double
downloads. Also, fonts require the crossorigin attribute to avoid
CORS issues — this includes self-hosted font files.

This is useful for A/B testing scripts, for example, which need to
execute as immediately as possible, or web fonts buried within
CSS, which are valuable to display ASAP to give the best visual
experience.

Web fonts

Web fonts are a perfect example of how the web is fast until we
bog it down with critical-path resources.

The easiest way to prevent them contributing to a slow experience
is just not to use them — stick to a native font-stack if at all
possible. Another benefit is that users will experience the website
in a font they are accustomed to.

48

Asynchronicity

Relying on a native font stack may not be acceptable to the client/
stakeholder’s branding requirements, so if we must use custom
web fonts, we need to make sure they are loaded asynchronously.

There is a convenient new CSS property for this called font-display,
which allows us to control rendering:

.custom-font {

 font-family: Lato, sans-serif;

 font-display: swap;

}

When set to swap, it will render the page with the fallback font and
switch it out for the custom one once it’s been loaded, avoiding
blocking the initial render.

As of writing, font-display: swap is only supported in Chrome and
Opera, but support is also coming in the next versions of Safari and
Firefox.

For other browsers, alternative solutions are available — Zach
Leatherman’s blog is the go-to destination for this advice [3].

Self-hosting

Many web font solutions, including Google Web Fonts,
recommend loading their fonts by linking to an external stylesheet.

By implementing this way, we’re not only introducing a single point
of failure, but loading requires an additional DNS lookup, another
TLS handshake and an extra request too, so it’s far more preferable
to self-host our font files as a first party resource.

49

An additional benefit of self-hosting is that, if the hosting stack
provides HTTP/2 support, we can push the relevant font files to the
user when they request the HTML, ensuring content is rendered
with the custom fonts asap and the “flash of unstyled text” (FOUT)
is minimised. Just be aware that configuring Push is tricky and your
mileage may vary, Jake Archibald has a great article on this [4].

Correct formats

Finally, fonts can come in a variety of formats. WOFF2 is the golden
standard at the moment — all major browsers support it and it has
a ~30% smaller file size than WOFF.

The only time you’ll need WOFF is for support in IE11 and below.

JavaScript

Serving your JavaScript in the most optimal manner can be an
endless task, but just starting with the basics will have tremendous
benefits.

JavaScript can be instructed to download asynchronously using
the async or defer attributes on <script> tags — simple, right? Not
quite.

50

It’s worth noting the difference between these two, as many
people see async as the successor to defer.

• By default, scripts will download, parse and execute
synchronously, blocking all browser activity.

• With async, scripts won’t block while downloading, but they
will parse and execute as soon as they can.

• With defer, scripts will be downloaded as low priority, but
parsing and execution won’t occur until full page load.

The temptation, for simplicity, is to bundle a single JavaScript file
containing all your dependencies and custom code, then serve it
using async, but this can place significant CPU load on the browser
as it comes to execution. Remember: not everyone is lucky enough
to own the latest smartphone.

If our build pipeline supports it, we can export two bundles for
site-wide scripts, one of which is for our critical scripts and another
which is deprioritised until after page load, serving these as async
and defer respectively, so non-critical scripts do not choke the
CPU during initial page load.

Bundling

You can take JavaScript/CSS bundling further by exporting many
per-page bundles to reduce the size of assets to be downloaded,
parsed and executed on each page.

51

Tree-shaking

It’s not the most straight-forward implementation, and it will vary
based on technology stack, but it’s possible to run both CSS and
JavaScript through a process called ‘tree-shaking’ — this checks
which code is executed and removes the unused parts.

This is particularly useful when loading entire CSS/JS frameworks/
libraries when only subsets of the functionality are actually
executed.

Image optimisation

Images are not on the critical path for rendering pages, so are
often relegated in the minds of web performance experts, but they
are still an essential part of the user experience.

Starting with layout images (such as logos, icons, background
images) first is a solid bet, they are going to change irregularly, so
there is no need to re-optimise. Browsers also typically prioritise
them over content imagery when loading.

The best way to optimise content images is via a CDN solution,
such as IMGIX [5]. This will automate all the work, but they aren’t
free and it adds a dependency on a third party service. I’d certainly
recommend this approach, but as we’re discussing methods that
don’t require a financial investment, the next best solution is
performing optimisation prior to deployment.

For both layout and content imagery, our options are to either
integrate a tool like ImageOptim [6] into the build pipeline or
download the GUI version and manually process each image.

52

My team experimented extensively with images for Matalan’s
website, and these are the techniques we finalised upon:

1. Render at 2x but compress heavily, this will result in a
smaller, better quality image when scaled down, even for 1x
displays.

The only gotcha here is for sites with very image-
heavy pages, you may need to be mindful of memory
consumption. As always: make sure you test on real low-
powered devices.

2. Serve progressive JPEG as the default format, but serve
WebP where a browser supports it. You can use either the
Accept header for server-side detection or a <picture>
element client-side:

<picture>

 <source src=’path/to/my.webp’ media=’image/webp’ />

</picture>

53

3. Lazy-load any images below the fold. LQIP (low-quality
image placeholders) or SQIP (SVG-based LQIP), techniques
popularised by Medium.com, will make the experience less
jarring:

<img src=’path/to/preview.jpg’ data-src=’path/to/real.jpg’

class=’js-lazyload’ />

<script>

(function() {

 document.querySelectorAll(‘.js-lazyload’).

forEach(function(image)

 {

 image.setAttribute(‘src’, image.getAttribute(‘data-src’))

 })

})()

</script>

Onwards and upwards

As you can see, some simple changes can significantly reduce our
dependence on the network, but the work doesn’t stop here I’m
afraid.

Browser vendors are constantly innovating and improving the
toolset available to us, so it’s important we use at least a little of
the time they save us for keeping up-to-date with the evolving web
performance landscape and testing new techniques.

54

Resources

[1] Harry Roberts
The Fallacies of Distributed Computing (Applied to Front-End Performance)
https://csswizardry.com/2017/11/the-fallacies-of-distributed-computing-applied-
to-front-end-performance/

[2] sw-toolbox
https://googlechromelabs.github.io/sw-toolbox/

[3] Zach Leatherman
https://www.zachleat.com/web/

[4] Jake Archibald
HTTP/2 push is tougher than I thought
https://jakearchibald.com/2017/h2-push-tougher-than-i-thought/

[5] imgix
https://www.imgix.com/

[6] ImageOptim

https://imageoptim.com/mac

55

56

PERCEIVED PERFORMANCE
MATTERS, TOO

Jason Lengstorf (lengstorf.com) is a developer, designer,
author, and friendly bear. His focus is on the efficiency
and performance of people, teams, and software. At

IBM, he creates processes and systems to Make The Right
Thing The Easy Thing™. At all other times, he wanders the

earth in search of new and better snacks.

Jason Lengstorf
The author

http://lengstorf.com

57

We all know the loading speed of our sites matters. Amazon
famously claimed that just one second of added load time
would cost them $1.6 billion in sales each year [1]. As it turns out,
perceived performance — how fast a page feels — is almost as
important as how fast it actually is. (For the science behind all of
this, read Denys Mishunov’s deep dive [2].)

So even if you work on a site where you have zero access to the
server, you can still affect performance — and those effects add up
to a better experience for the people using the site, better metrics
for the company, and a better-looking portfolio for you.

Performance is more than just delivering assets

Traditionally, performance has been summed up as, “How fast can
we get all the resources from the server to the browser?” And while
that’s still an extremely important part of improving performance,
it’s no longer the only part.

Let’s take a look at several strategies we can implement — using
only front-end code and tools — to improve the perceived load
time of our web apps.

Help the browser load assets faster

This isn’t actually perceived performance — it’s a way to get assets
downloaded faster. However, it’s done entirely on the client side,
so we shouldn’t skip it.

By default, browsers will typically download resources in sequence,
which means that resources are downloaded in the order they
appear in the markup. These resources can often prevent the page
from rendering, or other resources from loading. This is typically
referred to as “blocking”.

58

Consider this markup:

<html>

 <head>

 <link rel=”stylesheet” href=”/css/main.css” />

 <title>My Website</title>

 </head>

 <body>

 <h1>Hello, world!</h1>

 <script src=”/js/vendor.js”></script>

 <script src=”/js/main.js”></script>

 </body>

</html>

On downloading, the browser would get some HTML, pause to
load and render the CSS, get more HTML, stop again to load and
render the JavaScript, and finally finish loading the HTML.

By default, resources load sequentially

In modern browsers, we have the ability to start preloading our
resources in parallel using <link rel=”preload”> [3], which decreases
the amount of time spent waiting for resources to download.

59

<html>

 <head>

 <link rel=”preload” as=”script” href=”/js/vendor.js” />

 <link rel=”preload” as=”script” href=”/js/main.js” />

 <link rel=”stylesheet” href=”/css/main.css” />

 <title>My (Faster) Website</title>

 </head>

 <body>

 <h1>Hello, world!</h1>

 <script src=”/js/vendor.js”></script>

 <script src=”/js/main.js”></script>

 </body>

</html>

This causes the browser to start downloading the scripts and styles
right away, in parallel, which helps speed up the initial render.

With <link rel=”preload”>, resources load in parallel

For a full breakdown of what rel=”preload” can do, see this post by
Yoav Weiss [4].

Don’t let script downloads block the rest of the page

In many cases, we’re loading resources that aren’t necessarily
important for simply getting a page to the browser. For example,
if the page has JavaScript to display a modal window after a user
clicks a button, that can be downloaded later.

60

To accomplish this, we can take advantage of the async and defer
attributes [5] on our scripts:

<script src=”/js/main.js” async></script>

Simply by adding this attribute, we tell the browser that it shouldn’t
wait for the script to download before continuing to render the
page. Both async and defer accomplish this — where they’re
different is in how they handle the script after it’s loaded:

• async will execute the script as soon as it’s done loading,
blocking the HTML parsing until it’s finished, which is ideal
for critical resources (for example, if you’re working on a
single-page JavaScript app)

• defer will wait to execute the script until the document has
finished parsing, which is great for scripts that aren’t critical
for rendering the page: analytics, scripts that handle specific
user actions, etc.

Example of async (top) vs defer (bottom). Image credit: Ire Aderinokun

For more information, check out Ire Aderinokun’s detailed look at
the differences between async and defer [6].

61

Load less important resources later

Many other resources, such as images, can usually be loaded
later. This is often referred to as “lazy loading”, and it’s a powerful
strategy for shrinking the initial size of a given page.

The general idea is this: people shouldn’t have to wait for an image
to download that’s not even visible to be downloaded before
seeing the content

Example of lazy loading from responsive-lazyload.js

There are many ways to approach this, but it generally follows a
structure like this:

1. Instead of loading image files, a placeholder is rendered (a
blank GIF, for example) in the markup.

2. The path to the image is added as a data attribute.

3. When the image enters the viewport, a script starts
downloading the image.

4. Once the image is downloaded, the placeholder is replaced
with the actual image.

To quickly add lazy loading for images in your web app, check out
responsive-lazyload.js [7].

62

Use the skeleton loading pattern if it makes sense

In many apps, the slowest part of the load is the data. Requests
to APIs are often sent asynchronously — which is a good thing,
because it helps get the rest of the resources to the browser faster.
However, this means that often times the markup, scripts, and
styles are all loaded, but there’s no data to display.

Developers often deal with this by showing loading spinners.

Image credit: https://loading.io/

Unfortunately, in some cases a spinner works against the perceived
performance of the page. For that reason, many companies —
including Facebook, LinkedIn, IBM, Pinterest, and many more
— use skeleton screens, or mockup-like representations of the
interface, to improve the perceived performance of their apps.

Example of a skeleton loading pattern while loading (left) and loaded (right)

Part of what makes this effective is that people are able to start
visually exploring the page before data arrives. Skeleton screens let
us see roughly where things will be displayed, so we know where

63

to focus our attention when content arrives.

This requires extra design to implement, but when done well it can
have a huge impact on the perceived loading speed of your apps.
For a solid walkthrough of creating skeleton components, check
out this tutorial [8].

Send fewer requests to the server

One of the best ways to improve load time is to... request less stuff.

There are many ways to accomplish this — many of which are best
addressed during design — so let’s only look at ways that don’t
affect the layout of our pages.

Inline small, critical resources

In some cases, swapping out a small CSS include for an inline
<style> tag can make things faster by removing an HTTP round
trip.

However, it’s important to weigh the tradeoffs of this approach,
because inline resources can’t be cached the same way as external
files — if the inline resources are large, it can hurt performance.

Google’s Lighthouse audit tool recommends inlining critical
resources to avoid blocking the render [9], and using async or
defer for all non-critical resources.

Use a Service Worker to make static resources available

offline

The addition of Service Worker [10] to most modern browsers [11]
is a huge opportunity to boost performance. By adding a Service

64

Worker, we’re able to store static resources offline, which means
the browser won’t even make a request for cached resources.

This can have huge performance impact, because a many apps
are now able to deliver their static resources only once, and then
make subsequent page loads near-instant, with zero data transfer
required to render the next page. (Coupled with the skeleton
loading pattern, even apps that need to load data from a server on
every load can feel instant.)

And thanks to tools like sw-precache [12], setting up a Service
Worker is fairly painless in many build pipelines (e.g. Webpack,
Gulp).

Explore the benefits of adding GraphQL to your stack

Unlike the other recommendations in this section, GraphQL [13]
requires changes to the server, so be sure to weigh the tradeoffs of
implementing a new data layer against the benefits of easier data
access.

In many applications that rely on REST APIs, it can be tricky to set
up and chain together all the asynchronous calls required to load
data. And each of those calls is a separate HTTP request. That
complexity makes it hard to keep performance at the forefront,
because just making it work at all is hard enough.

GraphQL is a way to access data that removes all that complexity
from the front-end by allowing complex queries to be sent
asynchronously in a single HTTP request, using a straightforward
approach that makes good performance practices — such as
skeleton loading patterns — extremely simple to implement:

export default ({ loading, data }) => (

65

 <div className={`block ${loading ? ‘block--loading’ : ‘’}`}>

 {data && <p>{data.content}</p>}

 </div>

);

For an example of how a GraphQL request can be used with the
skeleton component pattern in React, check out this example on
CodePen [14].

GraphQL is not magic, though, so the complexity this removes
from the client-side is transferred to the server side. I tend to prefer
this, because it makes a clearer separation between presentation
logic and business logic, but whether or not the benefits are worth
the effort will vary from project to project.

Remember: don’t skip actual performance

Addressing client-side performance is critically important, but
remember that perceived performance can’t fix underlying
performance issues — it merely masks them. So if you’re working
on an app with slow server response times, the techniques in this
article should be used in addition to efforts to speed up actual
performance, not in place of them.

Server performance is beyond the scope of this article, so we won’t
cover it here. For some ideas to get started, take a look at HTTP/2
[15], using CDNs [16], and caching server responses [17].

66

Resources

[1] Kit Eaton, FastCompany
How One Second Could Cost Amazon $1.6 Billion In Sales
https://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-
16-billion-sales

[2] Denys Mishunov, Smashing Magazine
Why Perceived Performance Matters, Part 1: The Perception Of Time
https://www.smashingmagazine.com/2015/09/why-performance-matters-the-
perception-of-time/

[3] W3C
Preload
https://w3c.github.io/preload/

[4] Yoav Weiss, Smashing Magazine
Preload: What Is It Good For?
https://www.smashingmagazine.com/2016/02/preload-what-is-it-good-for/

[5] Mozilla
<script>: The Script element
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script

[6] Ire Aderinokun
Asynchronous vs Deferred JavaScript
https://bitsofco.de/async-vs-defer/

[7] Jason Lengstorf
Responsive Lazyload Examples w/Loading Animation
https://code.lengstorf.com/responsive-lazyload.js/loading-animation.html

[8] Max Block, CSS Tricks
Building Skeleton Screens with CSS Custom Properties
https://css-tricks.com/building-skeleton-screens-css-custom-properties/

[9] Lighthouse, Google
Render-Blocking Resources
https://developers.google.com/web/tools/lighthouse/audits/blocking-resources

67

[10] Mozilla
Service Worker API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API

[11] Can I Use
Service Workers
https://caniuse.com/#feat=serviceworkers

[12] sw-precache
https://github.com/GoogleChromeLabs/sw-precache

[13] GraphQL
http://graphql.org/

[14] Jason Lengstorf, CodePen
Skeleton Loading Pattern with CSS
https://codepen.io/jlengstorf/pen/NabRVb

[15] Ilya Grigorik and Surma, Google Web Fundamentals
Introduction to HTTP/2
https://developers.google.com/web/fundamentals/performance/http2/

[16] Mozilla
CDN
https://developer.mozilla.org/en-US/docs/Glossary/CDN

[17] Akos Kemives, RisingStack
Redis + Node.js: Introduction to Caching

https://community.risingstack.com/redis-node-js-introduction-to-caching/

68

THE NEXT FOUR BILLION:
HOW TO MAKE SITES
PERFORMANT ON MOBILE
DEVICES

Jem Young (jemyoung.com) is a (very) tall engineer at
Netflix who loves dogs, reading, and clean code. He really

enjoys working across the stack but his true passion lies
in JavaScript and building a clean user experience. He

believes that empathy is the key to building an effective
UI and when he’s not out riding his bike, you can find him

encouraging other engineers to write more tests.

Jem Young
The author

http://jemyoung.com

69

By the end of 2017, around 40% of the world’s population will
have access to the internet. Thanks to the proliferation of cheap
smartphones and expanding global coverage, the vast majority
of people will be on mobile devices so it’s not a surprise that
mobile usage continues to grow each year. Now more than ever,
it’s crucial to deliver a lightning-fast user experience, especially
in emerging markets such as India or southeast Asia where a
phone can often end up being the sole device for communication,
entertainment, and information. As engineers, we need to treat
mobile devices as first class citizens and optimise for the next
four billion people, who will be connecting to the internet using a
mobile device.

Limitations

Before we can talk about performance, we need to define what
exactly constitutes a mobile device. Though mobile computing has
exploded in the past two decades and the precise definitions are a
bit murky, we can broadly categorise something as “mobile” if it’s
a network-capable device, has a screen, is portable, and runs on
a battery. From this definition we can extrapolate what our goals
should be when we talk about mobile performance:

Performance goals for mobile devices

• Use as little data as possible

• Use as little CPU and battery as possible

• As fast as possible

When thinking about mobile users, we have to understand how
mobile computing compares to desktop computing. Aside from
screen size, the two primary differences are connection speed and

70

processing power (how long it takes to download the assets and
how long it takes to execute the code). While desktops and laptops
tend to connect to the internet via WiFi or Ethernet, a mobile
device is typically on a cellular network where download speeds
are constrained and often limited by the budget of the consumer
as they have to pay per byte of data transferred. Another constraint
to consider is the computational ability of the device; that is, the
availability of processing power in terms of CPU and battery usage.
Now that we understand the constraints of working with mobile
devices and with our performance goals in mind, we can come up
with two simple rules for mobile performance:

Rule #1: Send as little data as possible to the client

Rule #2: Don’t waste processing resources

Now, let’s keep these two rules in mind as we cover some practical
performance optimisations for mobile.

Serving the right asset

When considering connection speed it’s important to remember
that most of the world is on slow and often unreliable cellular
connections. As developers, we often think nothing of adding
a useful node module or two as the need arises to help us in
the relentless bid for inertia that is coding “in the zone.” Don’t
forget that the true cost of such actions are felt by the end user,
especially those on mobile connections where an extra 500KB can
sometimes add three to four seconds to a page’s loading time. By
taking a holistic view of our web applications and understanding
how the HTML, CSS, images, and JavaScript fit together, we
eliminate the unnecessary parts and create a better experience for
mobile users. The best place to start is by examining the image
assets that make up your websites’ payload.

71

Take a look at these three pictures:

Three images at different resolutions. Photos by burak kostak from Pexels

 A 5184 × 3456 B 1920x1080 C 640x426

On a typical mobile device, all three images look fairly identical.
On a high-resolution screen, say a 15’’ MacBook Pro retina display,
images B and C appear fuzzy as they have a lower resolution
than the native 2880x1800 of the MacBook. Unfortunately,
many engineers and designers use high-resolution images when
designing applications and forgetting that while a high-resolution
image looks great on a large screen, it’s overkill on most mobile
devices. This breaks Rule #1 — send as little data as possible to the
client. Fortunately (and I don’t say this very often), HTML to the
rescue! Using a standard tag, we can define rules to help the
browser know which image asset to download and display.

<img

 srcset=”C.png 1440w,

 B.png 1080w,

 A.png 640w”

 src=”A.png”

 alt=”cute cat”

/>

Using the scrset attribute, we can now tell the browser which
image (A) is best suited for a mobile device, and this nets us a
decrease of about 600% in file size when compared with image B.

72

Using the tag with srcset, it’s easy to ensure that the best
fitting image asset is sent to the client. What about images loaded
from CSS? Next, we’ll take a look at media queries.

“Mobile first” design

The term mobile first design has been a part of the UI engineering
lexicon long enough for the message to have (mostly) sunk in: we
have to always consider the mobile user experience.

Google trend for the popularity of the term “mobile first design”

When most UI engineers hear the term, they immediately think of
media queries which are essentially a way to set CSS rules based
on the user’s device parameters. A standard CSS rule for setting a
background image to the body of a page might look something
like this:

73

body {

 background: url(‘images/bg/hi-res.jpg’);

 background-size: cover;

 @media only screen and (max-width: 600px) {

 background: url(‘images/bg/lo-res.jpg’);

 }

}

Modern web browsers will intelligently parse this CSS, and only the
image for which the rules apply will be downloaded. In this case,
a browser on a mobile device will only download the lo-res.jpg
image. When thinking about mobile first design, it’s important to
not only consider the layout of your application but also the layout
of your code. The browser can give us easy performance wins if we
structure our CSS correctly.

Sending the correct image asset to the user is one of the fastest
and easiest ways to improve performance on mobile devices.

Browser hinting

Though a user’s connection and CPU time are finite, we can use
a series of techniques collectively known as “resource hinting” to
help tell the browser about what assets the user is going to need
next. While the user is reading or otherwise interacting with your
page, the browser can fetch static assets in the background, so that
when the user navigates to the next page in your app, the assets
needed to render the page are already in the browser’s cache,
which increases the perceived performance of the page. Resource
hinting is an especially effective technique for mobile users when
the connection is limited, and making excessive network requests
cannot only slow the current page down, it can make the page
appear as if it is still loading, which is a poor user experience.
While there are a few types of resource hints [1] that we can use,

74

we’re going to focus on two of the most commonly used types:
prefetching and prerendering.

Prefetching

Prefetching a resource means telling the browser that the user will
need the asset in the near future. If the browser has idle time, it will
make a network request in the background and add that resource
into the cache. To utilise prefetching, we add an HTML <link> tag
with rel=”prefetch” into the page markup.

Example: prefetching a CSS file

<link rel=”prefetch” href=”/static/index.css” />

Now, when you inspect the network, you’ll see a request for index.
css. We can identify prefetch requests by inspecting the request
headers and looking for a purpose: prefetch or X-moz: prefetch
header. It’s important to note that when prefetching a resource, the
browser does not do any evaluation. For example when the user
taps the link to move onto the next page, there will still be a brief
delay, as the browser has to evaluate the HTML/JavaScript/CSS
before rendering the page. This is where prerendering comes in.

Prerendering

Prerendering, as the name implies, renders an HTML page ahead
of time, before the user navigates to it. In the mobile computing
world where CPU time and network speed are limited, the ability to
fetch and render a web page in the background can be a valuable
tool. If the browser has idle time, it will make a network request in
the background for an HTML page and related assets and render it
in a hidden tab. To utilise prerendering, we add an HTML <link> tag
with rel=”prerender” into the page markup.

75

Example: prerendering the next page

 <link rel=”prerender” href=”/nextPage.html” />

Unlike prefetching, browsers don’t send any special headers when
making a prerender request. To identify such requests, we have
to utilise the Page Visibility API [2] to register when a page was
prerendered. Here’s an example of such code:

document.addEventListener(“visibilitychange”, () => {

 if (document.visibilityState === ‘prerender’) {

 // Log that the page prerendered

 } else if (document.visibilityState === ‘visible’) {

 // Start animations, videos, logging, etc...

 }

}, false);

While prefetching and prerendering are amazing tools, there
are caveats that affect our two main concerns when it comes to
mobile computing: network requests and resource consumption.
With both prefetching and prerendering, we need to be very
certain that the user is going to actually use the resources that
we’ve fetched ahead of time. Otherwise, we’re just wasting the
user’s network connection which is especially important to people
on cellular connections, where the data plans are often pay-per-
byte. Even accounting for the network cost, prerendering may
seem like a silver bullet when it comes to mobile performance:
the user taps on a link and the page is available instantaneously
but we have to consider our second rule — don’t waste processing
resources. Constantly prerendering the next page means that
we’re always rendering an extra page on every request, and that
essentially means that we’re using twice the CPU, which can have
an adverse effect on the user’s battery life.

Only utilise prefetch/prerender resources if you have a high degree

76

of confidence that those resources will be used in the near future.

Progressive Web Apps

Progressive Web Apps (PWA) are one of the most exciting things to
happen to the web since the introduction of AJAX. As engineers,
we can now create web apps that look and feel like native
applications, work offline, and progressively enhance based on
the capabilities of the user’s browser. One of the most valuable
features for mobile users is the ability to cache content, so that
your application not only loads quickly, it has the ability to work
offline thanks to the persistent Cache API. At the backbone of all
PWAs is a Service Worker, which has has all the capabilities of a
standard Web Worker with the added benefit of persisting outside
the tab context and having the ability to intercept and cache
network requests.

A Service Worker can intercept and cache network requests to allow your app to load faster or

even work offline

Using a Service Worker to cache requests means that we can now
build an application that works offline or, in the very least, loads
much faster thanks to resource caching. A site that has many
repeat visitors and a high degree of interactivity or static resources

77

is a good candidate for using a PWA. Mobile users will especially
benefit as caching means fewer network requests and thus a
faster experience overall. However, using a PWA has several costs
including cache management, worker persistence, and adding
additional JavaScript code to your application’s payload. Thus, if
your site does not have many repeat visitors and does not have
a lot of shared code between pages, a PWA may not be worth
the cost. A better decision for sites like this would be to actually
simplify and convert it into a static site (i.e. little to no JavaScript or
XHR).

Static site case study: Netflix

The Netflix homepage is one of the top 50 most visited sites on the
internet, so naturally, they run a fair number of performance-based
A/B tests, constantly testing various optimisations to improve
the experience for millions of visitors each day. In one of those
tests a colleague of mine, Tony Edwards [3], removed most of the
client side JavaScript, including the UI library and rewrote all the
necessary code (event handling, logging, etc) in vanilla JavaScript.

Tony studied all of the UI code and realised that other than for
server-side rendering, there wasn’t actually much use in including
most of the JavaScript that was being sent to the client (Rule #1).
If Netflix could send less code to the client, not only is that a win
in terms of network usage, it’s a win for processing time, which
in turn decreases battery consumption. If you run a performance
profile on most modern web pages, you’ll notice something
curious: most of the processing time is not spent on the loading
or the rendering of the page, it’s spent just reading and parsing the
JavaScript payload.

78

A breakdown of processing time on a web page

By relying on only server-side rendering to create what is
essentially a static page, Netflix was able to shrink its payload and
decrease network and CPU usage.

Netflix was able to drastically cut its JavaScript payload by not
including a client-side UI library, which led to a 50% reduction in
Time to Interactive on their homepage.

Aristotle once said, “nature operates in the shortest way possible”
and this is exactly how we should build for mobile performance:
only send what is absolutely necessary to get the job done. By
simply reducing the payload, we can achieve a twofold success for
mobile users as we’re using less data and less battery.

79

Conclusion

Now that we understand how to serve the right image assets,
the use cases for progressive web applications, and how simply
converting a web page into a static site can improve performance,
it’s easy to see that making our sites performant on mobile devices
is a very achievable goal. The most important thing to remember
is to build with empathy. As web engineers we have to imagine
what it would be like to only have internet access via a low-end
phone and slow network because that’s the status quo for most of
the world today. We now have the tools and knowledge to build a
faster, better internet for not only those on the web today but for
the next four billion coming online very soon.

Resources

[1] W3C
Resource Hints
https://w3c.github.io/resource-hints/

[2] Mozilla
Page Visibility API
https://developer.mozilla.org/en-US/docs/Web/API/Page_Visibility_API

[3] Tony Edwards, Twitter

https://twitter.com/tedwards947

80

THE CRITICAL PATH: A QUEST
TO RENDER PIXELS QUICKLY

Stefan Judis (stefanjudis.com) started programming six
years ago and quickly fell in love with web performance,

new technologies, and accessibility. He worked for several
start-ups in Berlin and recently joined Contentful to

tell the world how an API-first CMS can make you a bit
happier. He is also the curator of the web performance

online resource Perf Tooling (perf-tooling.today),
organiser of the Web Performance Meetup Berlin,

contributes to a variety of open source projects and
enjoys sharing nerdy discoveries.

Stefan Judis
The author

http://stefanjudis.com

81

The times in which front-end developers had to explain that
mobile matters are finally over. Everybody understands that
products that work well on mobile will be more successful.

Especially with a global target audience this is very important.
Today, the country with the most internet users is China (751
million people) [1] and 96 percent of the people in China use the
“mobile internet” [2]. You cannot serve these users with a broken
mobile experience.

But what does that actually mean — “works well
on mobile”?

Personally, I don’t really like the differentiation between mobile
and desktop environments and prefer to “just build performant
sites”. If a site feels fast on a mobile device on a mobile connection,
it will feel even faster in a desktop environment.

Mobile taught us an important lesson, though. Connections are
flaky — there is no such thing as a stable internet. We have to give
our best to get something on the screen as quickly as possible to
guarantee a good user experience.

To understand how to achieve a quick rendering, we have to
understand how browsers work and what it takes to render pixels
on the screen.

The construction of the DOM and CSSOM

Before a browser can display a website on the screen, there is a lot
of work involved. It all starts with the initial request for the HTML
document. The browser then receives the bytes, converts these to
characters, transforms them to tokens defined in the HTML spec

82

[3] and continues to convert them to objects representing the
actual HTML elements like paragraphs or images.

Due to the structure of HTML, the work is not done at this point.
The created objects are heavily nested, which means one object
can include other objects, which then can include more objects.
Think of a paragraph that includes images and spans. The final step
is to create a tree representation of all these objects to keep the
information of how they all relate to each other. This tree is called
the DOM (document object model) and is used for all further
browser rendering operations.

Unfortunately, the DOM tree doesn’t include any information on
what the parsed HTML should look like and how the elements
should be laid out. This information is included in external
stylesheets, inline style elements or style attributes. The operations
that are needed to bring these styles into a usable format are
similar to the ones needed to construct the DOM.

The browser scans the discovered CSS and also transforms it into a
tree structure. The result is called CSSOM (CSS object model).

Structural and visual information is now available in form of the
DOM and CSSOM, but these two are completely independent
and not connected to each other. To get the first pixels onto the
screen, there is one final step to perform.

The required combination – the render tree

To figure out what should be rendered, the browser walks through
the DOM tree and evaluates what elements should be visible
by looking up the matching tree nodes defined in the CSSOM.
Elements like the head or elements that have a matching display:
none; CSS declaration won’t be included in the render tree. By

83

combining the information of the DOM and CSSOM the render
tree includes everything that is needed to render and lay out every
visible element.

This whole process is called the critical rendering path or in short
the critical path. As you have seen, there are several steps that are
included in the critical path. The time it takes significantly depends
on how the website is structured, but also the device capabilities
and network conditions of the user.

How can we shorten the time duration of the critical path and
create a good user experience?

Minimise the render blocking

When analysing the critical path for a website the first thing I
recommend is to check what is included in the head element of a
site. There are several ways to increase the time to first render and
very often the most important blockers can be found in the head.

The critical render tree setup very much depends on the fast
creation of the DOM and the CSSOM. You’ll want to avoid anything
that could interfere with the work of the DOM or CSSOM parser.

So what should you watch out for?

Scripts – the synchronous delayers

JavaScript interrupts the browser in the creation of the render tree,
which is a common problem. There are several ways to include
and execute JavaScript code in your documents. The first one is a
simple inline script element.

84

<head>

 <script>

 console.log(‘Hello world!’);

 </script>

</head>

You can place this wherever you want and the browser will execute
the script. JavaScript is a dynamic language and has access to
the DOM and the properties that are defined in the CSSOM. As
this inline script can change the DOM structure, it interrupts the
creation of the DOM and browsers execute the script when it’s
discovered. As you can imagine, this slows down the creation of
the render tree. The execution of the example might only take a
few milliseconds but still… it stops and slows down the parsing of
the HTML.

Let’s have a look at another example:

<head>

 <script src=”../some-javascript.js”></script>

</head>

script elements can also request complete JavaScript files. This
means the browser has to fetch an additional resource. The
behaviour remains the same, though. The browser interrupts the
HTML parsing and requests the file to execute it. The delay now
increases from a few milliseconds to whatever time it takes to
fetch the file. Think of your mobile connection now, under certain
circumstances this can take several seconds and is something to
avoid at all cost.

85

The blocking of the HTML parser with a synchronous script

The blocking of the HTML parser with a synchronous script

(blocked during download and execution)

This delay is the reason why it was best practice to put script
elements at the end of the file in order to not interrupt the DOM
creation at the beginning, but rather at the end. However, this is
not best practice anymore and there are better ways to do it.

script elements also support attributes called defer and async.
These attributes change the script execution behaviour of the
browser to not interrupt the DOM creation.

The blocking of the HTML parser with an asynchronous script (blocked during execution)

Scripts with an async attribute are fetched asynchronously so
that the browser does not stop to parse the HTML while the file
is downloaded. There is one catch, though. Whenever the script
download finishes, the parser will be stopped and the script
executed. This means that asynchronously loaded scripts usually
don’t delay the first render but can interrupt the rendering in case
the HTML is not completely parsed yet.

86

The non-blocking of the HTML parser with a deferred script

Deferred scripts also don’t stop the HTML parser when they’re
discovered but execute only when the HTML parsing is done. This
means that the execution of deferred scripts can happen later than
asynchronous scripts but these scripts don’t interfere with the
DOM creation, which is a good thing.

There is one last big difference between async and defer that has
to be mentioned. Multiple async scripts are executed whenever
they are downloaded no matter of the order in the HTML
document. Deferred scripts, on the other hand, keep the order in
the document. This can be extremely handy when dealing with
several included scripts that rely on each other.

The comparison of the execution order scripts requested by the async and defer script elements

87

But why are synchronous scripts at the end of the file an anti-
pattern today?

The reason is that scripts at the end of the document will be
discovered later. Imagine having to deal with a massive HTML
file. The browser concentrates on all the markup first and then
discovers that there is a script at the end. This delays the request
creation, whereas a deferred script can be requested and executed
as soon as the DOM is ready. If you want to read more on that
topic, Steve Souders wrote a great article about it [4].

Remember: JavaScript can block the HTML parsing.

Stylesheets – the big blockers

To build the CSSOM the browser has to request all external
stylesheets that are included in the document. The rendering can’t
start before the CSS is being downloaded. That’s why external
stylesheets are treated as “render-blocking” resources.

This can be problematic. When the browser discovers an external
stylesheet in a link element, it has to be requested (if it’s not sitting
in some cache), parsed and transformed to the CSSOM first.

These three tasks heavily rely on network conditions and device
capability. The time needed to request a CSS file on a slow 3G
connection is affecting the critical path in a similar way as a huge
CSS file that has to be processed by a low-end device. That’s why a
critical look at the loaded CSS is always valuable.

88

Start render time with a render-block external stylesheet

Bringing in complete libraries like Bootstrap or Foundation with
a simple link element to have a few lines of CSS for a few button
styles come with a cost. Maintainable and well-structured CSS
does not only make developers happier — cluttered CSS with tons
of overwrites results in more render-blocking bytes on the wire,
too.

Remember: the amount of CSS you ship has a direct impact on
the user experience.

Get everything down as quickly as possible

So, if you rely on the network, it brings in factors you can’t control
and can drastically slow down the critical path. What if you could
get around the blocking behaviour of external CSS to speed up the
first render?

Inlining of critical CSS

You can save requests and avoid network dependencies by inlining
resources in the HTML document via style and script elements

89

or by using encoded images. This might sound like a good idea
but should be considered very carefully. Inlined resources like a
complete stylesheet can’t be cached separately and will result in
more bytes that need to be downloaded at every visit.

What if you could only inline the styles that are needed for the
first paint and load the rest asynchronously to speed up the first
render?

To evaluate the required styles you can either do it by hand or use
projects like Addy Osmani’s Critical [5]. Critical evaluates the styles
to display the content that is visible “above the fold”. “Above the
fold” styles are the styles that define how the initial visible area of
a site looks when a user opens it in their browser. In responsive
web design, the evaluation of these can be tricky because the page
might look different depending on the device but with a bit of
trying and tweaking it can be absolutely worth it.

Critical also offers a ready-to-use workflow to extract these critical
styles, inline these into the document and load the remaining CSS
asynchronously into your project.

Loading CSS asynchronously is possible with the smart use of a link
element and a rel=”preload” attribute. The preload value lets you
specify resources that will be needed for a document. The browser
then starts downloading the stylesheet and with the help of an
onload handler the rel attribute can be changed to stylesheet,
which means that the styles are applied when the resource is
available. This way you can load CSS in a way that’s not render-
blocking.

<head>

 <style> // critical styling </style>

 <link rel=”preload” href=”path/to/mystylesheet.css” as=”style”

90

 onload=”this.rel=’stylesheet’”>

</head>

The Filament Group is maintaining the loadCSS project [6], which is
the go-to resource to implement the loading of asynchronous CSS.

This technique can help to drastically decrease the time that
passes before the first render because there is no render-blocking
stylesheet included in the document anymore.

Start render time with inlined critical CSS and an asynchronously loaded stylesheet

91

The optimal result can be achieved when the inlined CSS has a size
of not more than 14 kilobytes. Why 14kb? Let’s have a detailed look
at the functionality of HTTP.

The anatomy of an HTTP request including TCP setup

An HTTP request consists of the TCP handshake (SYN, SYN
ACK & ACK) that has to be performed before a resource can be
downloaded.

The download starts using a principle that is called “TCP slow
start”. The idea is that the server starts sending a relatively low
number of bytes first (14,600 bytes in the first round) and increases
the amount of transmitted data with every run until packets get

92

lost. This way the network’s maximum carrying capacity can be
evaluated.

By fitting all the required resources into the first round of received
bytes the optimal first render time can be achieved because no
further round trips are needed. This way the critical path is as short
as possible. If you want to read more about the details of HTTP and
networks in general, Ilya Grigorik published a whole book that’s
available for free online [7].

Inlining? Can’t we simply use http/2 push?

A lot of people suggest using http/2 push in order to not have to
rely on inline styles. This is correct in theory but there are some
caveats with http/2 push today.

The optimal push is not there yet

http/2 with all its benefits (for example, hpack header compression
and multiplexing) has broad support in the current browser
landscape. One of its praised features is the “push” functionality.
The idea is that the server can push resources to the browser
without it asking for it.

The scenario could be that a browser requests an HTML file and
the server responds with the HTML, but also with all the required
CSS and JavaScript files at the same time. This sounds great, but
the problem is that there is currently no way for the server to know
what data is available in the cache of the browser. It simply pushes
everything... every time. This results in wasted transferred data.

Yoav Weiss wrote about this topic years ago in his article “Being
pushy” [8] and recommends using http/2 push only for resources
that would usually be inlined — for example, the critical CSS.

93

If there is some server-side processing involved, which delays the
first bytes of the HTML document (most importantly the head),
then http/2 push can bring some benefits over the inlining of
resources. Otherwise, the difference between pushed and inlined
critical CSS is very small. In the end, it’s your call if the relatively
complex implementation of http/2 push is worth it.

rel=”preload” to the rescue

The fact that the server using http/2 push doesn’t know the
content of browser caches (yes, there are many [9]) is a big
drawback, but there is another technique that can help to get
resources down the wire faster.

You remember the rel=”preload” hack to load stylesheets
asynchronously? Let’s have a look at what preload should actually
be used for. It can be used as an element included in the head...

<link rel=”preload” href=”https://fancy-fonts.io/some-font.woff2”

 as=”font”>

or it can even be set as an HTTP header...

Link: <https://fancy-fonts.io/some-font.woff2>; rel=preload; as=font;

Each implementation gives the browser information on what
resources are needed in the document and should be requested
early. Let’s take web fonts. Usually the browser has to download
the CSS and create the CSSOM and render tree to then figure out if
web fonts are needed for the document and to download the file.
Using rel=”preload” it can start the download right away knowing
that it needs them at some point.

94

In comparison to http/2 push, preload will always be slower
because the browser has to react to the HTML response of the
server, whereas push would send the data right away. What’s really
powerful about preload, though, is that it takes the browser cache
into consideration.

This means that preload is only a tiny bit slower than http/2
push but easier to implement and debug, and it doesn’t waste
bandwidth with already cached resources.

http/2 cache digests – the glory future

A new specification called “cache digests” [10] is in development
to solve the “unknown cache” problem of http/2 push. It defines
a way, in which the browser can inform the server about its cache
internals and contents. This way the wasted bytes of http/2
push can be saved and resources can really be served before the
browser asks for it — which will result in a huge performance
boost.

95

Optimising the critical path

Optimising the critical path is all about getting rid of render-
blocking resources and the creation of well-structured documents:

• Focus on the critical resources

• Get required assets down first and get them down quickly

• Avoid additional networks dependencies and ship as little
initial data as possible

These steps might seem like a lot of work but a fast first render
time will make a big difference to your users. Every additional
second of waiting leads to frustration and increases the chance
that your users will simply leave before your site loads. Today,
expecting that your users will wait for your site to load is simply
ignorant, and will make them annoyed and lead them to your
competitors. People have better things to do. You know how it is:
“ain’t nobody got time for that”!

Further reading

• Google published a complete series including tips and
tricks on how to optimise the critical path. [11]

• Patrick Hamann constantly educates, teaches and speaks
about critical path optimisations. His talks are highly
recommended. [12]

• Ben Schwarz wrote an excellent article on request
prioritisation, critical requests and ways to download
them as quickly as possible. [13]

96

Resources

[1] Internet World Stats
Top 20 Countries in Internet Users vs. All the World – June 30, 2017
http://www.internetworldstats.com/top20.htm

[2] China Internet Watch
China Internet Statistics 2017
https://www.chinainternetwatch.com/whitepaper/china-internet-statistics/

[3] W3C
HTML 5.2
https://www.w3.org/TR/html5/

[4] Steve Souders, Performance Calendar
Prefer DEFER over ASYNC
https://calendar.perfplanet.com/2016/prefer-defer-over-async/

[5] Critical
https://github.com/addyosmani/critical

[6] loadCSS
https://github.com/filamentgroup/loadCSS

[7] Ilya Grigorik
High Performance Browser Networking
https://hpbn.co/

[8] Yoav Weiss
Being Pushy
https://blog.yoav.ws/being_pushy/

[9] Jake Archibald
HTTP/2 push is tougher than I thought
https://jakearchibald.com/2017/h2-push-tougher-than-i-thought/

[10] HTTP Working Group, Internet Engineering Task Force
Cache Digests for HTTP/2
https://tools.ietf.org/html/draft-ietf-httpbis-cache-digest-00

97

[11] Ilya Grigorik, Google Web Fundamentals
Critical Rendering Path
https://developers.google.com/web/fundamentals/performance/critical-rendering-
path/

[12] Patrick Hamann, CSSconf EU 2017
CSS and the first meaningful paint
https://www.youtube.com/watch?v=4pQ2byAoIX0

[13] Ben Schwarz, Medium
The Critical Request
https://medium.com/@benschwarz/the-critical-request-90bb47da5769

98

OPTIMISE PRIME: HOW
TO OPTIMISE IMAGES FOR

PERFORMANCE

Henri (twitter.com/HenriHelvetica) is a freelance
developer who has turned his interests to a potpourri of

performance engineering with pinches of user experience.
When not reading the deluge of daily research docs and

case studies, or indiscriminately auditing sites in Dev Tools,
Henri can be found contributing back to the community,

co-programming meetups including the Toronto Web
Performance Group or volunteering his time at various
bootcamps. Otherwise, he’s training and focusing on

running the fastest 5k possible.

Henri Helvetica
The author

http://twitter.com/HenriHelvetica

99

When Steve Jobs unveiled the iPhone in 2007, he said the
following during the demonstration:

“I’m going to load in the New York Times. It’s kind of a slow site
‘cause it’s got a lot of images.”

This was a comment that largely escaped attendees during the
historic unveiling. However, a decade later, we are arguably having
the same difficulties.

Over the last few years we have also seen an explosion of the use
and power of digital photography, thanks to the ubiquitous and
omnipresent smartphone. Users not only shoot but also share
these images online. Pictures have become literal currency. Using
this currency has proven to be a challenge.

Recent data published indicated that for the first time in history,
the mobile phone surpassed the desktop as the primary device to
access the internet.

Worldwide internet usage chart: desktop vs mobile and tablet from

October 2009 until November 2016

100

It’s ironic then that the very devices creating much of the
photographic content are also the ones struggling to process these
digital assets adequately. The average smartphone is a $150 to
$200 mid to lower tier Android device [1].

The front-end is the most hostile development platform in the
world [2], and images are part of that maelstrom. When speaking
of performance, the case for the proper management of images
and their optimisation can be made in many ways.

The reason for image optimisations

We must optimise for the best user experience, and much of that
is based around speed. Facebook recently decided to show people
more stories that will load quickly on mobile and fewer stories that
might take longer to load [3].

We must optimise for the networks we use. A classic study told
us that 53% of visits are abandoned if a mobile site takes more
than three seconds to load [4], and networks do not handle large
images well.

As we are working with mobile, we must optimise for screens.
Responsive design and device fragmentation have made image
management a touch more challenging.

101

Android phone device screen fragmentation

Improperly sized images are a large part of the challenges online.
It leads to many hurdles, including the following: image decoding
and memory management.

The image decoding can be very taxing and work is being done to
alleviate the stress. [5]

Image decoding chart indicating size vs decoding time

102

The greater the amount of pixels, the more time consuming the
decoding process. As such, a poorly sized image is taxing.

Below is an example of a car manufacturer’s site and a desktop-
sized asset loading on mobile, forcing for more decoding than
necessary.

A desktop size image asset shown loading in mobile

Also keep in mind the memory. Depending on the colour space,
the memory footprint of the image can be substantial. To quote
Ilya Grigorik of Google: “Out-of-memory errors are very common
in low end devices, very very very common and the number one
culprit is images.” [6]

All of these have real world implications. Images are still an achilles
heel at retail [7], and the data costs of images are also a hurdle for
users.

At writing, the average page weight is 3,464KB with 53% of it
comprised of image assets. As the largest source of data, images
will also be the largest source of data savings.

103

Image formats

Understanding images [8] and the available formats is part of the
optimisation process when making performance decisions. So let’s
look at the main formats used today.

GIF

The Graphical Interchange Format, the one that is best known
for being pronounced with a soft ‘G’, has also been around the
longest. Introduced in 1987, it’s a lossless format capable of 256
colours and transparency, making this one good for small logos
and the like.

Conceived in the early days of computing, its current reputation for
bloat makes it the least favourite and viable of the usable formats.
More recent advancements in computing have allowed for some
lossy optimisations for the old-school hold overs. Only in small
and rare cases however might this be the smallest of options
to employ. Even the popular animated GIFs found online are
essentially now MP4s. That said, the GIF has been called a useless
format.

SVG

The only one of the non-raster image formats to be actively used
online, the Scalable Vector Graphic, which dates back to 1999, is
only now seeing a spike in popularity. This vector format by design
compresses well as it’s not storing any pixel data, but mathematical
detail of colours, lines, curves etc... textual information. As such,
SVGs can be compressed and optimised using gzipping [9] or even
brotli [10].

104

Best for logos, icons, simple graphics and the like, the key is to
reduce the SVG’s complexity as much as possible. That means
reducing the precision, collapsing groups, rounding numbers
(reducing the number of decimal places) and other things like
removing the metadata added by the authoring software. As the
complexity is simplified, the taxing of the GPU lightens, which is
especially useful for older devices.

A great tool to further optimize the SVG is the SVG Optimizer or
the SVGO [11]. This node tool also comes as a web app, SVGOMG
[12], grunt and gulp tasks, with additional plugins for popular apps
like Illustrator and Sketch.

PNG

The Portable Network Graphic is the second most popular image
format. It came about during a patent spat with the GIF format. As
such, the PNG was born with an improved compression algorithm,
greater colours (8 and 24bit) and a true alpha channel. Again,
as it initially was a lossless format, lossy compression was made
possible later.

What makes the PNG so powerful is the ability to choose
between an 8bit, 256-colour image with transparency, right up
to a 16m colour, 24bit-image with an 8bit alpha channel for very
photorealistic renderings. This varying bit depth makes the PNG
quite a versatile format.

As such, the PNG can be used for a number of things: It can
easily replace the GIF, and is able to also provide photorealistic
renderings but at the cost of size.

105

WebP

Although the newest of the bunch, it might be one of the more
important formats despite its low usage rate. This Google
promoted format possesses much of the features of a PNG, an
alpha channel as well as 24bit colour in both lossy and lossless.
Much of the advancement in Google’s research has provided
significant savings with an aggressive encoder, in comparison to
both PNGs and JPEGs. The image below started as a 2.1MB-JPEG,
but as a lossy WebP is now just 401KB!

An image showing size as a JPG with its equivalent size as a WebP

In fact, Google believes that the WebP could eventually replace the
PNG in the not so distant future.

A Can I Use table indicating WebP browser support

106

As a Google property, the support came from browsers powered
by the Blink rendering engine (above). But since Mozilla announced
their impending support for the format [13], it has made the WebP
an even more attractive solution considering the data savings.

A chart of browser market share as of August 2017

The browser market share above [14] indicates the need to at least
consider this format when possible. In light of just about 50% of
your audience is capable of accepting the format, the WebP is a
format worth investigating as a developer.

JPEG

The image workhorse of all formats, the JPEG makes up just over
40% of the images used online and is the format of choice by
nearly all of the consumer cameras and smartphones worldwide.

Just as with the PNG, making the best use of this format will yield
some of the best image optimisations results. The JPEG, present
since 1992, has been the focus of plentiful research through the
introduction of updated encoders, much of it still on-going.

107

It was presented as a lossy photographic format, to counter what
is a lossless asset in the PNG-24. What resulted was essentially the
best and most popular format for anything that needed something
beyond 256 colours or photographic and lossy, long before the
arrival of the WebP. As such, adoption rate was high. The JPEG
eventually also featured lossless variants which, although not
used often, are served mostly by CDNs: JPG-2000 (Safari/WebKit
supported) and JPG-XR (Microsoft browser supported).

But part of the magic of the JPEG involves something called
chroma subsampling.

Chroma subsampling

Chroma subsampling is “the practice of encoding images by
implementing less resolution for chroma information than for luma
information, taking advantage of the human visual system’s lower
acuity for colour differences than for luminance.” [15]

In plain English, we are working with the human’s inability to
notice missing colour detail, over light, and by doing so are able
to alter some colour data in the image whilst still maintaining
fidelity. Essentially, it’s a process that averages neighbouring pixel
colour data. Why is this important? By performing this action, we
are in effect saving even more bytes. The standard YCbCr (chroma
subsampling) value where no colour data has been altered is 4:4:4.
However, the most data efficient and sought YCbCr value is 4:2:0,
where only the light value (Y) remained intact. When complete, the
achieved savings can be as much as 75% of the original image size.
As such, subsampling is a big part of the JPEG compression.

108

Remember the oversized image from the car manufacturer? No
subsampling had been applied (see below).

Image of the meta data in an image asset, showing a chroma subsampling of 4:4:4.

Exif Data

Exif data is an area which gets too little attention. No one can really
pinpoint where this below photo was taken. This is where exif data
comes into play [16].

Image of revellers on a patio

Exif data or the Exchangeable Image File Format is meta data
information embedded by digital cameras into a JPG image (in

109

our case) which will list an abundance of information about the
photograph such as (but not limited to): camera model, make, time
stamps, altitude, lens information, whether flash was on or off and
so much more. In fact, this kind of meta data was identified in over
5,000 distinct fields across various images [17].

This is but a pinch of what’s available, but if you look closely
(below), you’ll be able to spot where GPS information has been
included, along with additional information.

Exfi data exposing GPS location

This meta data, which is added by your camera and sometimes
even your post-processing application like Photoshop, takes up
actual space. In a study, an average of 16% of image data was
comprised of exif data information [18]. That means that a 100kb
image has 16kb of removable data. Now imagine that at scale.
This is why exif data should be removed from your images. Most
compression applications will do the job.

110

Photoshop

This is an essential tool for many in editing and exporting images,
but we need to be aware of a few details. Apart from needing a
slightly more modern JPEG encoder, Photoshop also does the
following when working with the said format:

Any JPEG exported image at a quality of 50% or less will have a
chroma subsampling value of 4:2:0. Anything else is set to 4:4:4.
This means that unless you habitually use images exported at 50%
or less, you need to send the image through a third-party app to
bring that chroma subsampling back down to 4:2:0 to get the
maximum savings. A small detail worth nothing as Photoshop is
very much widely used.

Now what?

Now that we understand the moving parts of image optimisations,
how do we apply all of this?

First, we make sure that we employ all the tools available at our
disposal. Some of the tools are picture, source and srcset. The
picture element specifically is important in handling different
image formats.

 picture: a responsive images method to control which image
resource a user agent presents to a user, based on resolution,
media query and/or support for a particular image format.

We would then end up with something like:

<picture>

 <source type=”image/webp” srcset=”optimize_prime.webp”>

 <source type=”image/vnd.ms-photo” srcset=”optimize_prime.jxr”>

111

</picture>

In the above example, anything that supports WebP would load
the optimize-prime.webp file and move out. The only moment
the optimize-prime.jpg file would be loaded is when none of the
user agents is capable of supporting the two previous formats, for
example Firefox.

To accommodate breakpoints and responsive design, we can then
add some w descriptors which will indicate at which viewport
width we would serve a new image.

<picture>

 <source type=”image/webp”

 srcset=”/optimize_prime_100.webp 100w,

 /optimize_prime_400.webp 400w,

 /optimize_prime_800.webp 800w,

 /optimize_prime_1000.webp 1000w,

 /optimize_prime_1200.webp 1200w,

 /optimize_prime_1400.webp 1400w” />

 sizes=”(min-width: 500px) 33.3vw, 100vw” />

</picture>

The lone challenge with this? You must do the same for each
format multiplied by each image you wish to use on a given site.
This is possibly where you might want to outsource this image
format selection process by using a modern CDN like Cloudinary
[19], Imgix [20] or Akamai [21] to do the heavy lifting.

In terms of tools that we need for the optimisation and
compression of the images, of the many available on the market,
ImageOptim [22] is still one of the best ones. It employs all of
the modern encoders in both the case of PNGs and JPEGs, and

112

is regularly updated, employs SVGO and also strips the metadata
right out. It’s offered in both a GUI and CLI [23] flavour.

ImageOptim preference panel

Now, to streamline much of this process, task runners such as
Gulp [24] will help. There are many options of packages available,
including gulp-imagemin [25], which will allow to automate the
workflow and will allow for custom plugin options.

$ npm install --save-dev gulp-imagemin

Then:

const gulp = require(‘gulp’);

const imagemin = require(‘gulp-imagemin’);

gulp.task(‘default’, () =>

 gulp.src(‘src/images/*’)

 .pipe(imagemin())

 .pipe(gulp.dest(‘dist/images’))

);

113

Lazy loading

Finally, we need to discuss the idea of lazy loading. As per
Wikipedia, “a design pattern commonly used in computer
programming to defer initialization of an object until the point at
which it is needed.”

Research has revealed that around two thirds of content on any
given web page are below the fold or outside of the viewport.
We also have discovered that 50% of users never make it to the
bottom of the page [26]. That in mind, we could potentially save
bandwidth and data by lazy loading image assets. As such, this a
concept that must be kept in mind at all times to reduce wasteful
downloads. Lazysizes [27] is one of many techniques that can be
used [28].

Testing tools

There are number of very interesting testing tools just for images.
I personally like to always keep DevTools open and simply take an
early look at the waterfall and page weight, but there are a number
of tools that are specific to images that you can use to audit.

• RespImageLint [29] — Linter for Responsive Images: this
looks at your images and will tell you if they’re properly
sized or not, giving you a readout of the source and
container size delta.

• NCC Image Checker [30]: again, to address the need to
remind developers how poor resizing can affect the user
experience, the NCC offer a Chrome extension to check
on the image size.

• Website Speed Test [31]: Cloudinary has set up a page to

114

analyse all images on a page, and offer some simple and
raw data about the page weight, and the potential for
additional savings.

• Lighthouse [32]: we can’t mention DevTools without
including this auditing tool, which started as a
checking tool for progressive web apps. It has now
evolved into a fully fledged site auditor, which now
provides recommendations on image sizing as well as
compression and data savings opportunities. You can find
it in the ‘Audits’ tab of Chrome DevTools.

Conclusion

We have seen the costs associated with poor image management
upfront. From eroding user experiences, hampering retail sales,
creating bottlenecks and dissolving data plans and even shutting
down devices, their management has never been more important.
Armed with the discussed tools and techniques, we should all have
enough to at least apply the learned choices in our current and
upcoming projects, in order to restore the delightful and smooth
user experiences we all aim for.

115

Resources

[1] IDC
Smartphone Volumes Expected to Rebound in 2017 with a Five-Year Growth Rate of
3.8%, Driving Annual Shipments to 1.53 Billion by 2012, According to IDC
https://www.idc.com/getdoc.jsp?containerId=prUS42334717

[2] Peter-Paul Koch
Front end and back end
https://www.quirksmode.org/blog/archives/2015/01/front_end_and_b.html

[3] Jiayi Wen & Shengbo Guo, Facebook
News Feed FYI: Showing You Stories That Link to Faster Loading Webpages
https://newsroom.fb.com/news/2017/08/news-feed-fyi-showing-you-stories-that-
link-to-faster-loading-WEBPages/

[4] Henri Helvetica
The Need for Mobile Speed by DoubleClick
http://www.afast.site/2016/11/16/the-need-for-mobile-speed-by-doubleclick/

[5] Addy Osmani, Twitter
https://twitter.com/addyosmani/status/916391453076602880?lang=en

[6] Tim Kadlec, London Web Performance
https://www.youtube.com/watch?v=Wf7d7wQZra8&feature=youtu.be&t=37m54s

[7] Andy Davies, Twitter
https://twitter.com/AndyDavies/status/802224884084568065

[8] Jason Grigsby, Twitter
https://twitter.com/grigs/status/837026587019128832

[9] gzip, Wikipedia
https://en.wikipedia.org/wiki/Gzip

[10] Brotli, Wikipedia
https://en.wikipedia.org/wiki/Brotli

[11] SVGO
https://github.com/svg/svgo

[12] SVGOMG
https://github.com/jakearchibald/svgomg/blob/master/README.md

116

[13] Bugzilla
Implement experimental WebP image support
https://bugzilla.mozilla.org/show_bug.cgi?id=1294490

[14] Statcounter
Mobile Browser Market Share Worldwide
http://gs.statcounter.com/browser-market-share/mobile/worldwide

[15] Chroma subsampling, Wikipedia
https://en.wikipedia.org/wiki/Chroma_subsampling

[16] Exif, Wikipedia
https://en.wikipedia.org/wiki/Exif

[17] Kalev Leetaru, Forbes
The Hidden World Of News Imagery EXIF Metadata & iPhones As News Cameras
https://www.forbes.com/sites/kalevleetaru/2016/10/19/the-hidden-world-of-news-
imagery-exif-metadata-iphones-as-news-cameras/

[18] Inian Parameshwaran, Dexecure
Impact of metadata on Image Performance
https://dexecure.com/blog/impact-of-metadata-on-image-performance/

[19] Cloudinary
https://cloudinary.com/

[20] Imgix
https://www.imgix.com/

[21] Akamai
https://www.akamai.com/

[22] ImageOptim
https://imageoptim.com/api

[23] ImageOptim-CLI
https://jamiemason.github.io/ImageOptim-CLI/

[24] Gulp
https://gulpjs.com/

[25] gulp-imagemin
https://www.npmjs.com/package/gulp-imagemin

117

[26] Zoltán Kollin, UX Myths
Myth #1: People read on the web
http://uxmyths.com/post/647473628/myth-people-read-on-the-web

[27] lazysizes
https://github.com/aFarkas/lazysizes

[28] Maria Antonietta Perna, SiteGround
Five Techniques to Lazy Load Images for Website Performance
https://www.sitepoint.com/five-techniques-lazy-load-images-website-
performance/

[29] RespImageLint
https://github.com/ausi/respimagelint#respimagelint---linter-for-responsive-
images

[30] NCC Image Checker
https://chrome.google.com/webstore/detail/ncc-image-checker/
fphiheficgnpphmjdliclanppccfgifl

[31] Website Speed Test
https://webspeedtest.cloudinary.com/

[32] Lighthouse
https://developers.google.com/web/tools/lighthouse/

118

MAKE YOUR ANIMATIONS
PERFORM WELL

Anna Migas (twitter.com/szynszyliszys) has been working
as a front-end developer and designer for over five years.

During her time at Lunar Logic (lunarlogic.io), she’s had a
chance to create and maintain a few open source projects

related to web animations – for example, Starability

(blog.lunarlogic.io/starability). This experience helped
her understand animation performance in detail. In her

spare time, Anna loves skateboarding, reading books, and
travelling.

Anna Migas
The author

http://twitter.com/szynszyliszys

119

Over the last few years web animations have gained in popularity.
This was caused both by the access to a new technology (CSS
animations and transitions are now supported in most browsers)
and emerging design trends. When executed properly, an
animation can make our website or app more attractive and
engaging to a user. When executed poorly, it can be deadly to our
website’s performance or make the user wonder why it was even
added. The app can seem slow, non-responsive or inconsistent.

Animation should be an enhancement that makes it easier for
the user to understand how our website works. For example,
an animation that supports user interaction can be a good idea.
Adding an animated check mark icon can be a great way to give
the user feedback that the action they wanted to perform was
successful. Or you could animate the transitions between views to
help the user understand how the website’s navigation works.

A check mark icon that slides into the view can be an indication of a successful interaction

A bad example would be an animated slideshow that is auto-
played: most users tend to ignore images showcased this way.
They are in many ways similar to ads, and we are forcing users
to download image assets just for this purpose. We also need to
remember that some users have trouble focusing their attention
when there is movement on the screen, so adding a slideshow can
make it harder for them to browse the content of a website. Having
said that, the first advice on animation performance I am going to
give you is to not use animation for the sake of animating. Every
time you decide to add an animation, make sure it really enhances
the user experience of your website or app.

120

An example of an animation that helps the user understand how to navigate the website [1]

Choosing the right tool

Once you set your heart on adding an animation to your project,
you need to choose the right tool. Some people say that CSS
is better for animating than JavaScript (or vice versa), but it just
depends on your needs. Both CSS and JavaScript are great tools
for animating, but each technology has its pros and cons.

If you need to animate something really simple (for example, an
element entering a screen), CSS is the way to go. CSS animations
(and transitions) are native to the browser and you don’t need
to download any external assets to use them. Browsers have
additional optimisations implemented for CSS animations. A
browser runs most of its tasks in something called the “main
thread”. At the same time, the majority of CSS animations are being
run in a separate thread called the “compositor thread”. This means
that while the CSS animation is running, it doesn’t interrupt or
delay other tasks that the browser needs to take care of. This is a
great advantage of CSS animations. However, it’s hard to forget
about their biggest disadvantage: scheduling two or more CSS
animations together is difficult and inconvenient to work with.

This is where JavaScript animations shine: working with multiple
animations that need to be tied together is seamless. There are

121

many ways to animate things with JavaScript. The ones worth
mentioning are:

• Pure JavaScript

• Web Animations API [2]

• A framework (for example, the GreenSock Animation
Platform (GSAP) [3] or anime.js [4])

There are arguments for and against each method. Pure JavaScript
needs additional optimisations to be performant (see the
requestAnimationFrame() function described later in the article) but
is lightweight and in many cases can be a good solution.

The Web Animations API is the best of both worlds, as it’s native
to the browser, gets the same browser optimisations as CSS
animations and still gives you control over scheduling and timing
multiple animations. Unfortunately, the support for the Web
Animations API is still limited (Chrome 36+, Firefox 48+ and Opera
29+ have basic support), and it needs a polyfill to work everywhere
properly. Once native support for the Web Animations API is more
common, it could become the most sensible choice of all.

If your website relies heavily on animations, you might consider
using a framework. At the moment the GreenSock Animation
Platform (GSAP) is the recommended solution, as all the required
optimisations are implemented. However, it’s quite heavy. Anime.
js is a bit more limited but a lighter solution that you might want to
consider.

In conclusion: CSS is best for simple animations, while JavaScript
is a great alternative when you need to have more control over
multiple animations’ scheduling and timing.

122

Understanding the rendering process

Before we start optimising, we need to understand how a browser
renders a website. It will tell us how our animation can affect the
whole experience and which properties can be animated in a
performant way. So the steps a browser needs to take are:

1. Send a request to a server.

2. Create DOM elements (all HTML elements).

3. Recalculate the styles.

4. Calculate the layout (sizes of elements).

5. Paint (layer creation).

6. Compositing (putting layers together for a frame).

Steps a browser needs to take to show a page to a user

This is quite a lot of work to show a website to a user! Also, if any
change (for example, scrolling down or triggering an animation) is
introduced by the user, the browser needs to go through all these
steps again. The only difference here is that instead of the first two
steps (request and DOM creation) there can be a JavaScript trigger
at the beginning of the flow.

There are three types of changes that can be introduced, and some
of them are more likely to cause jank (website stuttering) than
others:

123

1. Layout change

The most costly change. It makes the browser go through all the
steps during the rendering process, because we alter the geometry
of the page. It’s triggered when we animate properties such as
margin, top, width, display, etc. We should avoid animating these
properties as well as animations that cause other elements to
move with them.

A change of layout triggers all browser rendering steps

2. Paint change

In this case the browser knows exactly how much space each
element covers, so it can skip the layout step in the rendering
process. Paint changes when we animate background, box-
shadow, color properties and similar. A less costly change, but still
can cause problems on some devices or if we animate too many
elements at once.

A paint change skips the “layout” rendering step

3. Compositing change

The change that happens when the browser already knows
which element is on which layer (created in the Paint stage) and
only needs to put the layers together. This is the change that
is most performant as some browsers can use a device’s GPU
to draw the image to the screen at this point. It happens as we
animate transforms (translate, rotate, scale) and opacity. That

124

said, transform and opacity are the properties that are the best for
animating. They give us enough options to create almost any type
of animated content and we should stick to them.

A compositing change is likely to omit the “layout” and “paint” rendering steps

If you want to quickly check what type of change is bound to
happen for any property, visit csstriggers.com [5].

Optimisation techniques

Now that we know we should focus on animating only transforms
and opacity, we can start the real optimisations. There are three
techniques that we will cover in this section: the will-change
property, the FLIP principle and the requestAnimationFrame()
function.

The will-change property

As mentioned before, during the Paint phase the browser puts
elements on layers. Layers in the browser could be compared to
layers in Photoshop: if two things are on the same layer, they are
glued together and there is not much we can do with them. If
elements are on separate layers, they can be moved around and
don’t affect other layers. We can take advantage of that and put
elements on different layers to animate them without causing
browser repaints (making the browser go through the Paint step
again).

125

By default, the browser puts all elements on one layer. There are
certain circumstances that “promote” elements to the new layers (it
can vary slightly in different browsers):

• 3D or perspective transforms

• Animated 2D transforms or opacity

• Being on top/a child of an existing layer

• Accelerated CSS filters

• In special cases <video>, <canvas>, plugins

• The will-change property

126

Let’s look at an example to understand why the will-change
property can be useful. If we want a button to move slightly up and
down on hover, we could write the code like this (see over:

@keyframes move-up-down {

 0% {

 transform: translateY(0);

 }

 50% {

 transform: translateY(-10px);

 }

 100% {

 transform: translateY(0);

 }

}

button {

 background-color: white;

 border: 1px solid blue;

}

button:hover {

 animation: move-up-down 1s infinite;

}

The problem is, the browser doesn’t yet know that the element
will be animated with the 2D transform property. By default both
button and all other elements around it will be on the same layer.
When a user hovers over the button, the browser will repaint the
whole page to put the button on another compositing layer and
the user can experience a slight lag before the element moves.

127

What is worse, when they move the cursor away, the browser will
repaint the page again to put elements back on the same layer.
This may cause performance flaws when our website is complex.

However, if we use the will-change property ahead of the
interaction, the browser will have separate layers for the button
and its surroundings and the animation will not cause any browser
repaints:

@keyframes move-up-down {

 0% {

 transform: translateY(0);

 }

 50% {

 transform: translateY(-10px);

 }

 100% {

 transform: translateY(0);

 }

}

button {

 background-color: white;

 border: 1px solid blue;

 will-change: transform;

}

button:hover {

 animation: move-up-down 1s infinite;

}

128

There are a few things we need to remember when we decide to
use the will-change property:

• Use it before the animation or transition is about to start.
If we add will-change at the same time as the browser
is supposed to start animating an element, it can have
a negative effect. At this point the browser is already
busy trying to create the new layer and the will-change
property would be yet another thing to take care of.

• Don’t overuse it — each new layer consumes the device’s
memory. If we put too many elements on separate layers,
the browser can crash.

• Use it in stylesheets if an animation/transition is bound
to be triggered many times. If we want to animate
something only once, a better option would be to
add will-change with JavaScript and remove once the
movement is finished:

var element = document.getElementById(‘element’);

 element.addEventListener(‘mouseenter’, hintBrowser);

 element.addEventListener(‘animationEnd’, removeHint);

 function hintBrowser() {

 this.style.willChange = ‘transform’;

 }

 function removeHint() {

 this.style.willChange = ‘auto’;

 }

129

It’s not supported in Internet Explorer/ Edge but you can use a 3D
transform hack instead:

-webkit-transform: translate3d(0,0,0);

The FLIP technique

FLIP stands for First Last Invert Play. It’s a principle that was first
introduced by Paul Lewis [6], a developer advocate at Google. We
take the first and the last position of an animated element and
invert them before playing the animation. So if we wanted to do
a simple movement of an element by 200 pixels to the right, we
would first pull the element 200px to the left and then let it slide to
its final position:

An inverse way of thinking about changing element’s position is a core of FLIP technique

130

@keyframes slide-from-left-flip {

 0% {

 transform: translateX(-200px);

 }

 100% {

 transform: none;

 }

}

Why should we even do that? Even though we are using
performant transforms for the movement, without FLIP the
browser still needs to take a moment to calculate the final position
of the element once the animation is triggered. This can be
perceived as a small lag between the time the user interacts with
the element and when the animation is played. If we use FLIP, the
browser makes this calculation before the user even has a chance
to use the page.

There is a gap of around 100 milliseconds before a person is able
to interact in any way with the rendered page — our brains are
just not fast enough to do it earlier. And we are using this 100ms
gap to calculate the positions of elements — if the final position is
already known, the browser has all the work done before and just
lets the element move to the point from where it started. Thanks to
FLIP, when the user triggers the element, it feels like the animation
is played instantly. It can make a difference for users with less
powerful devices (for example, low-end smartphones). FLIP should
be used only for the interactions that happen on user input.

If you decide to animate a more complicated scenario than just
moving an element from one side to another, I recommend using
FLIP.js [7] — a helper library to make calculating the final state of
elements easier. To understand the principle fully, read the blog
post written by its creator, Paul Lewis [8].

131

The requestAnimationFrame() function

If you are using CSS, GSAP, the Web Animations API or even jQuery
3.0.0+ for your animations, you have nothing to worry about. But if
you, for example, decide to animate elements with pure JavaScript,
you should familiarise yourself with the requestAnimationFrame()
function.

Earlier in the article we went through the steps that the browser
needs to take before showing a website to the user. These steps
form what we call a “frame”. To create an animation that looks
smooth, a browser needs to draw around 60 frames every second.
A quick calculation (1000ms/60 = 16.666ms) shows us that the
browser has only 16ms to build each frame. If the browser gets
interrupted (for example, by JavaScript changing the size of an
element), it needs to go through all the steps again. In this case, the
browser is likely to not create the frame in time and miss its 16ms
deadline. Unfortunately, this will be visible as jank — the animation
is stuttering.

We can prevent this by using the requestAnimationFrame()
function. It ensures that all the required JavaScript code is
scheduled at the earliest possible moment for each frame and
the browser has enough time to apply the changes. The frames
are not queued for the future and drawn only when the browser
is ready to paint them to the screen — this prevents unnecessary
draws. Another advantage is the fact that the browser doesn’t
play animations if the tab is not visible — a way to save memory
resources and battery life. Using the function is quite easy:

132

function repeated() {

 // show something many times

 window.requestAnimationFrame(repeated);

}

window.requestAnimationFrame(repeated);

Once we want the animation to stop playing, we can call the
complementary function, cancelAnimationFrame():

window.cancelAnimationFrame(repeated);

The function is supported in all modern browsers at the moment.
If you want to support older browser versions, you need to use
requestAnimationFrame() with vendor prefixes. To support IE9 and
older, use this polyfill [9] (which takes care of vendor prefixes by
default).

Testing your animations

It might seem obvious, but we should always test our animations.
Even thoughtful and optimised code can cause jank. At the same
time, I have seen examples of animations which seem to work
seamlessly, even though their code was full of imperfections.

The best way to test an animation is to use developer tools. I
personally use both Chrome and Firefox to get the accurate
measurements. I will quickly go through the options that are most
useful for animations.

133

Chrome

Rendering tab: When enabled (in More tools > Rendering), it allows
us to toggle a few options:

• Paint Flashing: helps to determine which elements get
repainted

• Layer Borders: all layers are shown with a border

• FPS Meter: presents us with a number of frames per
second metric

• Scrolling Performance Issues: shows us if an element
slows down the scrolling performance.

Google Chrome’s Rendering tab

Animations tab: Added recently, makes it possible to play
animations at a slower rate (25% or 10%), pause it or show certain
frames.

Performance tab: Lets us record the screen and any changes with
a precision of up to one millisecond (the shorter the recording the
easier it is to debug). We can see screenshots of how the animation
develops over time, the length of frames and the summary of steps

134

Chrome had to take to draw each one.

A way of testing animations — using the “Performance” tab in Google Chrome

Layers tab: A new addition, shows us why an element (or group of
elements) was put on the new layer. We can play with options and
even see how our layers look in 3D view when animated (although
it can be slow at times).

The “Layers” and “Animations” tabs enabled in Google Chrome

135

Firefox

Animations tab: Similar to the one in Chrome. We can see the
animations in slow motion and stop them at any given point
by using the draggable widget. A nice addition is an indication
whether our animation is optimised (a small lightning bolt icon)
and a tooltip with additional information.

Summary

I hope that reading this article has helped you understand the
rules of animation performance and inspired you to test your
own creations to avoid performance flaws. Let’s sum up the most
important points:

1. Don’t use animations for the sake of animating. Use them
to help users achieve their goal.

2. Animate only transform and opacity properties.

3. Use the will-change property, the
requestAnimationFrame() function and the FLIP technique
when applicable.

4. Avoid creating too many layers.

5. Animate elements that are on the top layers (not hidden
below other elements).

6. Test animations before optimising.

136

Further reading

If you are interested in learning even more, make sure to check out
these resources:

Jank Free [10]: contains articles on the causes of jank and ways to
prevent it

High Performance Animations [11]: an article to get a deeper
understanding on why only transitions and opacity should be
animated

Web Fundamentals — Design & User Experience: Animations [12]:
more information on developing animations by the Google team

137

Resources

[1] Material.io
How does material move?
https://material.io/guidelines/motion/material-motion.html#material-motion-how-
does-material-move

[2] W3C
Web Animations
https://www.w3.org/TR/web-animations-1/

[3] Green Sock
https://greensock.com/

[4] anime.js
http://animejs.com/

[5] CSS Triggers
https://csstriggers.com/

[6] Paul Lewis
https://aerotwist.com/

[7] FLIPjs
https://github.com/googlearchive/flipjs

[8] Paul Lewis
FLIP Your Animations
https://aerotwist.com/blog/flip-your-animations/

[9] rAF.js
https://gist.github.com/paulirish/1579671

[10] Jank Free
http://jankfree.org/

[11] Paul Lewis & Paul Irish, HTML5 Rocks
High Performance Animations
https://www.html5rocks.com/en/tutorials/speed/high-performance-animations/

[12] Paul Lewis, Google Web Fundamentals
Animations
https://developers.google.com/web/fundamentals/design-and-ux/animations/

138

PERFORMANT WEB FONT
TECHNIQUES

Matt James (mattjamesmedia.com) is a front-end
developer from St. Louis, Missouri, focused on crafting

performant, device agnostic, and accessible experiences.
He followed a long road through photography, the cycling

industry, personal training, and freelance web design to
arrive at a place where he is consistently trying to increase

the quality of web offerings for his organisation. With a
near-daily influx of new frameworks and libraries, Matt

tries to stay focused on which techniques will ultimately
lead to better user experience while still maintaining

solid baseline interactions for all users, regardless of their
browsing capabilities.

Matt James
The author

http://mattjamesmedia.com

139

When web fonts first appeared in 2009, they brought with them
the promise of rich typographic control, unique branding and more
leverage for web designers to carve out an identity for their clients.
Gone were the days of relying on web safe fonts, when designers
were resigned to the likelihood that a generic font would end up in
their carefully crafted layout.

However, for all their added polish, web fonts present a unique
problem for web performance. Despite accounting for a relatively
small slice of the average payload, web fonts have a unique
ability to bring the whole experience to a halt. A browser’s default
behaviour, when it encounters a web font, is to prevent any text
from rendering until the fonts have loaded and parsed, causing a
flash of invisible text or FOIT. The majority of browsers will wait up
to three seconds before giving up and providing a fallback font.
However, older WebKit browsers have an unlimited FOIT period
while waiting for a font. This means that for users on iPhones that
haven’t updated for a few years, web fonts can be a single point of
failure in an app rendering.

It doesn’t have to be like this. If we look at web fonts as a
progressive enhancement, a nice-to-have in ideal conditions,
and aim to implement some font-loading strategies to counter
the render-blocking nature of web fonts, we can have both the
rich typographic identity that web fonts afford and a reliable,
performant experience that ensures our users get content
regardless of network conditions. By embracing FOUT, or a flash of
unstyled text, as the default, content is served with a fallback font
and doesn’t have to rely on the availability of a web font to render.

Fortunately, the browser landscape is beginning to offer
developers a number of native tools to optimise font-loading
performance. While browser support is still evolving for a number
of these APIs, there are several reliable and robust polyfills that

140

help fill in the gaps for non-supporting browsers. Let’s dig in and
take a look at some of those native features first.

The font-display property

One of the most exciting recent developments in the CSS spec is
the font-display descriptor that can be included in the @font-face
rule. This new descriptor is a boon to web developers because
it can, in one line of CSS, declare to the browser exactly how it
should handle the period of time during which the custom font is
loaded.

Using font-display is simple. Just drop it inside the @font-face rule
and feed it one of five potential values to specify the intended
font-loading behaviour.

• auto just tells the browser to do what it would normally
do with web fonts. As mentioned before, this usually
means a three-second period of render-blocking before a
fallback font is rendered.

• block explicitly instructs the browser to block rendering
of the text until the web font is loaded. From a
performance perspective, this doesn’t provide any real
benefit to the user, but it does ensure that a custom font
will be the first font users see when that design element is
of critical importance.

• swap allows for no render-blocking period and provides
a fallback font immediately while the custom font loads.
The custom font is then allowed to replace the fallback
font whenever it loads, whether that’s 500ms or 10
seconds. This is great because it loads text immediately,
no matter what, but could be jarring when the custom

141

font takes a long time to load, forcing a repaint of the
content.

• fallback acts as a bit of a compromise between block and
swap with a block period of 100ms for the web font to
load before a fallback font is rendered. Then, if the web
font loads in under three seconds, the fallback will be
replaced. Otherwise it will continue to be shown.

• optional immediately renders the fallback font and gives
the web font 100ms to download. If it doesn’t load in that
time, it won’t be rendered on the initial visit. However,
it keeps loading in the background and can be cached,
either in the browser cache or a Service Worker cache to
be used in subsequent visits.

When added to a standard @font-face block, font-display looks like
this:

@font-face {

 font-family: ‘Montserrat’;

 src: url(”/font/Montserrat-Regular.woff”) format(“woff”);

 font-weight: 400;

 font-style: normal;

 font-display: swap;

}

142

With support for the font-display descriptor on the rise, developers will soon be able to

dramatically improve their font-loading performance with one line of CSS

Preload

When combined with another new browser feature, rel=”preload”,
font-display can almost completely eliminate the performance hit
that comes from web fonts. The benefit of adding the rel=”preload”
attribute is that it tells the browser that these resources are of
high priority and should have priority in loading. If it’s applied to
font files, those fonts are available much earlier in the rendering
process, minimising the amount of time to load. Combined with
a judicious use of font-display, these two browser features could
virtually eliminate FOUT.

<head>

 <link rel=”preload” href=”/font/Montserrat-Regular.woff2 ”

as=”font” type=”font/woff2” crossorigin>

</head>

While font-display and rel=”preload” will dramatically simplify
performant font-loading strategies in the future, their current

143

browser support is limited to Chrome and Chromium-based
browsers. While Safari and Firefox have both font-display and
rel=”preload” support in the works, the current support matrix
means that we need to look at more complex JavaScript-based
solutions to cover a wider user base.

As more browsers implement rel=”preload”, fonts can be loaded much earlier in the rendering

process, reducing their impact on performance

The Font Loading API

One such solution is the native Font Loading API. The Font Loading
API is a new addition to CSS and provides a JavaScript API to exert
explicit control over the behaviours of @font-face rules. One of its
major benefits is the ability to programmatically create new @font-
face rules, meaning that fonts can load asynchronously, preventing
their default blocking behaviour. This also eliminates the need to
manually write @font-face rules in your CSS.

The FontFace constructor takes three arguments when
instantiated: the family name, the src information, and — optionally
— an object containing the descriptors typically associated with @

144

font-face rules. Setting up an instance of Montserrat using the Font
Loading API would look like this:

var montserrat = new FontFace(‘Montserrat’, ‘url(Montserrat-Regular.

woff2) format(“woff2”), url(Montserrat-Regular.woff) format(“woff”)’, {

 weight: ‘bold’,

 style: ‘normal’

});

This is all well and good, but once a new instance of a FontFace
has been created, its load method needs to be called to add it to
the page and make use of it. The load method returns a promise
that resolves when the font successfully loads and rejects if the
font fails to load. Tapping into the load method, the newly created
Montserrat FontFace can be added like so:

montserrat.load().then(function() {

 document.fonts.add(montserrat)

}

To use multiple font files with the Font Loading API, there are
a couple potential paths to take. First, you can create each one
individually and load them separately. This ensures that one font is
not dependent on another font having loaded for it to render.

However, there are times when you might want to load you web
fonts together if they are related or you want to avoid multiple
reflows of your text if the fonts load at different times. To do this,
make use of Promise.all and pass it an array of load calls on each
font.

145

var montserrat = new FontFace(‘Montserrat’, url(Montserrat-Regular.

woff) /*other FontFace Info*/);

var merriweather = new FontFace(‘Merriweather, url(merriweather.

woff) /*other FontFace Info*/);

Promise.all([

montserrat.load(),

 merriweather.load()

]).then(function() {

 document.fonts.add(montserrat);

 document.fonts.add(merriweather);

});

Font Face Observer

As powerful as the control afforded by the Font Loading API is, it,
too, is a bit limited in its browser support. Currently, it‘s supported
by the latest versions of Chrome and Chromium-based browsers,
Firefox and Safari. Unfortunately, Microsoft Edge or older browser
versions do not support it. Fortunately, there is a polyfill, Font
Face Observer [1], that aims to replicate the Font Loading API and
extend its behaviour to a much broader collection of browsers.

The basic syntax of Font Face Observer looks similar to that of the
Font Loading API. Despite its similarities, there are a couple key
differences in terms of behaviour. First and foremost, Font Face
Observer expects an existing @font-face rule. Because of this, Font
Face Observer does not take a list of URLs as its first argument.
Instead, it takes the font-family name referenced in the @font-
face rule. By default, this means that the web fonts are no longer
asynchronous and will block render until loaded. However, Font
Face Observer returns a promise, which resolves when the fonts

146

have loaded. Using this behaviour, a CSS class can be added to the
<html> element, which can then be leveraged to apply the font to
the page.

To use Font Face Observer, you could include a link to it in the
<head> or include the script within an existing script file. Once the
script is available, you then instantiate a new FontFaceObserver
to monitor the loading of a given font. While this is certainly an
effective way to leverage the polyfill, you can squeeze a bit more
performance by dynamically creating it in the <head> of your file
and utilising the onload event to trigger your code.

<head>

<script>

var ffo = document.createElement(‘script’);

ffo.src=”/js/fontfaceobserver.js’;

ffo.async = “true”;

ffo.onload = function() {

 //Font Face Observer loading code

};

document.head.appendChild(ffo);

</script>

Looking back at the use of Montserrat, loading it with Font Face
Observer would look like this:

var montserrat = new FontFaceObserver(‘Montserrat’);

montserrat.load().then(function() {

 document.documentElement.className += “ fonts-loaded”;

});

147

Then, within the CSS, reference the class that has been added to
the <html> element to apply the web fonts.

p {

 font-family: Helvetica, sans-serif;

}

.fonts-loaded p {

 font-family: ‘montserrat’, Helvetica, sans-serif;

}

Font Face Observer provides a consistent experience across
browsers on its own and has the added benefit of being useful with
web font services like Google Fonts. This basic implementation
means a user will always see the fallback font first and experience
the web fonts once they have loaded. This can be optimised
further by caching the fonts after the initial visit, minimising the
period of FOUT.

Web font services

So far, with the exception of Font Face Observer, these techniques
have primarily focused on self-hosted fonts, which give you far
more control over the implementation. However, many developers
rely on a font service like Google Fonts or Typekit where the source
files are either abstracted away or have restrictions due to licensing
agreements. For services with restrictions, there is still a lot that
can be done with browser caching and Font Face Observer, but
there are new tools developing that will allow for the self-hosting
of fonts from Google.

148

Google Web Font Helper gives developers the ability to download font files typically served by

Google, allowing for more control over their font-loading strategies

Google webfonts helper [2] is an open source project that enables
a user to download font files that are traditionally hosted on
Google. This gives developers more freedom to add font-display —
use rel=”preload” or implement the Font Loading API. The increase
in control can lead to a major increase in perceived performance.
One downside is the loss of the Google CDN network, but
leveraging a CDN for all your static assets can circumvent that.

Avoid a jarring shift in layout

All of the techniques mentioned introduce at least some amount
of FOUT to the page. While this is optimal for content delivery,
it can leave something to be desired from a design standpoint.
Fortunately, tools like Font Style Matcher [3] can provide styling
options to better set up a fallback font, ensuring a less jarring
experience for the user when the text reflows.

149

Font Style Matcher provides a simple interface to create more accurate fallback font styling to

reduce the potentially jarring effect that can happen when a web font replaces the system font

Conclusion

As you can see, for all the rich design options afforded by custom
web fonts, they do have the potential to introduce a good
amount of complexity for developers looking to ensure efficient
content delivery. This is complicated even further for each
font file specified in a design. Fortunately, as browser support
expands for font-display and rel=”preload”, font loading will
become increasingly simple. And for designers who want to really
leverage typography with multiple font styles and font weights,
the upcoming implementation of variable fonts — fonts that have
all the information for every conceivable variant built into one
file — means that users will only need one or two font files, and

150

designers will be able to expand their typographic palette.

With all these new browser APIs and advanced font-loading
techniques, developers and browsers alike have finally addressed
the performance issues initially introduced by web fonts. As time
goes on and the typographic ecosystem continues to mature on
the web, both designers and developers will have more control
over type implementation than ever before and users will never
again have to feel the stinging pain of invisible text while waiting
for a custom font.

Further resources

Bram Stein’s Webfont Handbook [4] from A Book Apart is the
go-to guide for all things web fonts. It covers everything from
implementation and behaviour to performance and the future of
web fonts in a concise but thorough package.

Zach Leatherman’s Comprehensive Guide to Font Loading
Strategies [5] details a wide variety of font-loading techniques
designed to optimise the performance of text rendering. The
techniques range in complexity, but each has a specific use case
that can be applied to a given application.

The Web Font Optimization page by Ilya Grigorik [6] on Google’s
Web Fundamentals site offers a comprehensive round-up
of default font behaviour and further recommendations for
performance optimisation.

151

Resources

[1] Font Face Observer
https://fontfaceobserver.com/

[2] google-webfonts-helper
https://google-webfonts-helper.herokuapp.com/fonts

[3] Font style matcher
https://meowni.ca/font-style-matcher/

[4] Bram Stein, A Book Apart
Webfont Handbook
https://abookapart.com/products/webfont-handbook

[5] Zach Leatherman
A Comprehensive Guide to Font Loading Strategies
https://www.zachleat.com/web/comprehensive-webfonts/

[6] Ilya Grigorik, Google Web Fundamentals
Web Font Optimization
https://developers.google.com/web/fundamentals/performance/optimizing-
content-efficiency/webfont-optimization

152

MEASURING PERFORMANCE

Andy Davies (twitter.com/andydavies) is the associate
director for web performance at NCC Group, where he

helps clients to understand and improve the performance
of their websites. He regularly speaks about performance,
is the co-author of Using WebPageTest, and the author of
The Pocket Guide to Web Performance, both available at

andydavies.me/books.

Andy Davis
The author

http://twitter.com/andydavies

153

To improve the performance of our sites, we need to understand
how fast or slow they currently are and in this article we’ll explore
the three main approaches to measuring performance.

We’ll look at the problems each one is good at solving, which
should give you a good starting point to explore further and find
the tools that work best for your needs.

What to measure

When we think about performance, it’s easy to think of in terms of
page size or number of requests but they’re not really measures of
visitor experience — I’ve seen huge pages that were fast, and small
pages that were slow.

I prefer to approach performance from a timing view — how long
does the visitor wait for a page to start display, when is it visually
complete, when can they start to use it?

Depending on the type of site some of these timings are more
important than others. For example, on a news site it’s ‘when can
someone start to read the content’, for a retail site it might be
‘when can someone see the alternative views of a product, add it
to their basket etc’.

Measuring these events is key to understanding and improving
actual performance.

154

The home page for department store Fenwick loading on a mobile phone

There are other tools such as YSlow [1], PageSpeed Insights [2] and
Yellow Labs [3] that score performance and give some advice on
how to improve it.

There’s a beautiful simplicity to scores, but they’re detached from
the events visitors care about, so we’ll concentrate on tools and
approaches that allow us to time these events.

How to measure performance

Developer tools

Browser developer tools are often the place most of us begin to
think about performance. They’re close at hand, feature rich and
provide an incredible depth of information.

They have waterfalls that show the timings of the network
requests, flame charts that enable us to get a deep view on what
JavaScript functions are being called and how long they take to
execute and timelines to tie all the data together in a single view.

155

The level of detail they provide allows us to dig into what the
browser is doing and how the structure of our pages affect how
quickly they start to show content, become interactive etc.

Chrome DevTools Performance Timeline

In Chrome’s performance timeline view we can line up what’s
being displayed on the screen with the internal activity of the
browser — the resources being loaded and how long they take to
parse and be executed (in the case of JavaScript).

It also allows us to view a subset of the timeline, so we can focus
on just what occurs before the page starts to render, for example,
and see when the HTML stops being parsed while scripts execute.

We can also tether a mobile phone to our desktop to measure and
debug performance directly on the device.

156

Inspecting the performance of a page in Safari Mobile

This level of detail allows us to diagnose where our performance
bottlenecks are, make changes and then see how performance has
improved. But as well as diagnostic capabilities we often want to
track how our site’s performance changes over time and present
that in ways that are understandable for everyone.

Synthetic testing

Browser developer tools are great for doing a deep dive into the
performance of a page or site and with the advent of headless
browsers, which don’t have a traditional user interface and can
be controlled via test scripts, they can be incorporated into
automated performance testing.

Tools such as WebPagetest [4], Sitespeed.io [5] and their
commercial equivalents build on top of the data developer tools
generate, and execute tests in a consistent environment, so that we
can be confident we can compare test results from day-to-day and
week-to-week.

157

WebPagetest has so many features it’s often referred to as the
Swiss Army knife of web performance tools.

At the simplest level it enables us to create page load waterfalls,
on multiple browsers (including mobile), at different connection
speeds, from various locations across the world.

After running a test the first thing we see is a waterfall showing
the timings of each request on the page, and markers for browser
events such as DOMContentLoaded, and onLoad.

The waterfall allows us to get a picture of how fast or slow the
page is (longer bars are bad), how many requests it makes and
what types of content they are.

Waterfall showing some of the resources loaded by supermarket Sainsbury’s’ home page

Interpreting waterfalls can take time to learn and it’s not always
obvious how the order, in which resources load, affects the visitors’
experience.

So one of my favourite features is the filmstrip view and particularly
the ability to compare filmstrips from different tests.

We can use them to demonstrate how our site performs compared

158

to our competitors, or how changes have made our site faster, in a
way that makes it easy for anyone to understand.

Comparison of Sainsbury’s’ and Tesco’s homepages on a mobile device

WebPagetest has an API, so you can run tests regularly and track
performance over time, or include testing in a build pipeline so
performance regressions are detected early.

Once you start using the API heavily, you’ll run into the constraints
of the public site being shared with other people and your tests
will get stuck behind others. At this point you’ll want to consider
creating your own private installation either on local hardware, or
— if you want an easy option — there are pre-configured images
available for AWS.

If you don’t fancy running your own instance of WebPagetest
or Sitespeed.io, there are similar commercial products such as
CalibreApp [6], Performance Analyser [7], and SpeedCurve [8].

It’s impossible to give a full overview of all of WebPagetest’s
features in a short article, so if you want to get a better
understanding of the many things it can do, Rick Viscomi, Marcel
Duran, and I wrote a book — Using WebPagetest [9] — just for you!

159

Real user monitoring (RUM)

While tools like WebPagetest are great for benchmarking the
performance of a set of pages under laboratory conditions, they
don’t really represent the experience of our real-world visitors.

Performance in the real-world is very diverse, with different visitors
having different experiences depending on the device they’re
using, where they are in the world, the quality of their network
connection and even whether they’re stood next to the office
microwave.

Different types of pages across a site often perform differently,
some may be slower to generate, others have more stylesheets,
scripts or images, and the large number of pages on most
sites makes it impossible to measure them all with tools like
WebPagetest.

Fortunately, modern browsers have APIs that provide
measurements on the performance of the page and resources on
it. We can extract these measurements, beacon them back to a
server, enrich them with extra information like location and then
analyse the data to build a picture of our visitor’s experience and
how it affects their behaviour.

There are three well supported APIs that can provide us with
measurements on our visitors’ experience:

160

Navigation Timing

Contains the network timing points of the base HTML page, e.g.
DNS, connection, server response times, along with details of
when events like DOMContentLoaded and onLoad are fired, and
how long their handlers take to execute. [10]

Timings provided by the W3C Navigation Timing API

To get an idea of what these timing points look like in practice,
you can type performance.timing into your browser’s DevTools
console.

One gotcha to watch out for with Navigation Timing Level 1 is
that it uses the number of milliseconds that have passed since
1 January 1970 for its timings, whereas other timing APIs use
the number of milli- and microseconds that have passed since
Navigation Start. Level 2 of the standard switched to Navigation
Start as an epoch, too, but in the meantime some maths is required
to align Level 1 timings with the other APIs.

161

Resource Timing

Captures the network timings for resources (images, scripts,
stylesheets etc) included in the page. [11]

Due to privacy and security concerns when a resource comes from
a third-party host, by default only a limited set of timing points are
available. (Third parties must opt-in via the Timing-Allow-Origin
header if they want to make them all available).

The iframe security model may also block access to timing
information on resources included within them.

If you’d like some example code that demonstrates Resource
Timing, a few years ago I wrote a bookmarklet that uses it to
generate a partial page-load waterfall [12].

User Timing

Navigation and Resource Timing focus on network level events
and these tell us little about the visitors’ experience.

The marks and measures of User Timing [13] enable us to record
when events we care about take place and how long they take —
performance.mark timestamps a point in time and performance.
measure measures the time between two marks.

These allow us to start measuring events that we believe matter
to the visitor, for example using our hero image’s onload handler
to mark when it was loaded or measure how long a route change
takes in a Single Page Application.

WebPagetest can display marks and Chrome DevTools measures,
so using standards-based approaches gives all our performance
measuring tools access to a consistent set of data.

162

There are other APIs in development (and are currently only
supported by a few browsers) which measure when the page was
first painted (Paint Timing), how long frames took (Frame Timing),
and highlight long JavaScript tasks (Long Tasks).

Perhaps the most exciting of the proposed new APIs is Element
Timing, which will allow us to declaratively create timing points
based on when elements are rendered without needing any
JavaScript.

Build your own or buy?

There are libraries on GitHub such as Boomerang [14] and Episodes
[15] to help extract this data and beacon it to a server. There are
other server libraries to capture the beacons but sanitising, storing
and analysing the data is all code you would need to implement if
you wanted to build your own RUM solution.

It’s not unusual to see beacons with invalid timing data, for
example request end occurring before request start, so if you
write your own RUM solution, you’re going to spend a lot of time
sanitising data.

There are many commercial RUM products available, some focus
on just the performance measurements while others combine
the performance measurements with data on conversions, order
values, and engagement to build a picture of how performance
affects the success of the site.

163

Whether you choose to build your own RUM solution or buy
a product, I’d encourage you to choose an approach that also
captures business metrics such as revenue, so you can combine
them and demonstrate the impact of performance on the metrics
your business cares about.

How performance affects the bounce rate for three UK sites

Combining the approaches

We’ve covered three approaches for measuring performance and
each has its own strengths, so where do you start and how do they
fit together?

I tend to start with real user monitoring and use it to identify pages
that are important and should be faster, or visitor populations that
are slower and have a lower conversion rate or a higher bounce
rate.

164

Once I’ve identified the pages, or device experiences I want to
analyse, I use either DevTools or WebPagetest to explore further.
There’s overlap between the two tools, so I tend to use DevTools to
interactively explore and examine what’s actually happening in the
browser, whereas I tend to use WebPagetest to help understand
network behaviour, or block third parties to see what impact they
have on page performance.

When I want to demonstrate the impact of performance changes,
generating a comparison filmstrip in WebPagetest is an ideal way
to illustrate the improvement in an easy-to-understand way.

WebPagetest is great when teams want to build performance into
their day-to-day work cycle, both via testing key pages within build
pipelines, and via hourly or daily tests where the key metrics are
charted on dashboards, so performance can be tracked over time.

Faster experiences increase visitor engagement, and measuring
performance effectively is key to identifying the visitors we’re
delivering a poor experience to and the parts of our sites and
pages that need the most attention.

Resources

[1] YSlow
http://yslow.org/

[2] PageSpeed Insights
https://developers.google.com/speed/pagespeed/insights/

[3] Yellow Lab Tools
http://yellowlab.tools/

[4] WebPagetest
https://www.webpagetest.org/

165

[5] Sitespeed.io
https://www.sitespeed.io/

[6] Calibre
https://calibreapp.com/

[7] Performance Analyser
https://www.nccgroup.trust/uk/our-services/website-performance/web-
performance-products/performance-analyser/

[8] SpeedCurve
https://speedcurve.com/

[9] Rick Viscomi, Andy Davies, & Marcel Duran, O’Reilly Books
Using WebPageTest
http://shop.oreilly.com/product/0636920033592.do

[10] W3C
Navigation Timing
https://www.w3.org/TR/navigation-timing/

[11] W3C
Resource Timing Level 1
https://www.w3.org/TR/resource-timing/

[12] Andy Davies
Page Load Waterfalls Bookmarklet
https://github.com/andydavies/waterfall

[13] W3C
User Timing
https://www.w3.org/TR/user-timing/

[14] Boomerang

https://github.com/yahoo/boomerang

